Green nanotechnology is a thrilling and rising place of technology and generation that braces
the ideas of inexperienced chemistry with ability advantages for sustainability, protection, and
the general protection from the race human. The inexperienced chemistry method introduces a
proper technique for the production, processing, and alertness of much less dangerous chemical
substances to lessen threats to human fitness and the environment. The technique calls for inintensity expertise of the uncooked materials, particularly in phrases in their creation into
nanomaterials and the resultant bioactivities that pose very few dangerous outcomes for people
and the environment. In the twenty-first century, nanotechnology has become a systematic
breakthrough. Metallic nanoparticles (steel or steel oxide nanoparticles) have attracted loads of
hobbies because of their different physiological, technological, and chemical The biological
technique is popular because it produces green nanoparticles in an environmentally friendly,
simple, easy, quick, and cost-effective manner. Amino acid phenolic, flavonoids, terpenoids,
and proteins are examples of reduced and oxidizing agents. Agents of stabilization, synthesis
using plants, on the other hand, was already being debated., basics of green synthesis techniques
explored in this study with an emphasis on metals or metal oxides (ZnO, AgO, and TiO2), terpenoids as well as proteins, which can operate as chemical reducing and oxidizing agents, as
well as stabilization and of agents. Green synthesis using plants, , is still being debated.
The consumption of dried bananas has increased because they contain essential nutrients. In order to preserve bananas for a longer period, a drying process is carried out, which makes them a light snack that does not spoil quickly. On the other hand, machine learning algorithms can be used to predict the sweetness of dried bananas. The article aimed to study the effect of different drying times (6, 8, and 10 hours) using an air dryer on some physical and chemical characteristics of bananas, including CIE-L*a*b, water content, carbohydrates, and sweetness. Also predicting the sweetness of dried bananas based on the CIE-L*a*b ratios using machine learn- ing algorithms RF, SVM, LDA, KNN, and CART. The results showed that increasing the drying
... Show MoreIn this paper, the maximum likelihood estimates for parameter ( ) of two parameter's Weibull are studied, as well as white estimators and (Bain & Antle) estimators, also Bayes estimator for scale parameter ( ), the simulation procedures are used to find the estimators and comparing between them using MSE. Also the application is done on the data for 20 patients suffering from a headache disease.
Piperine, a crystalline alkaloid compound isolated from Piper nigrum, piper longum, and other types of piper, has had many fabulous pharmacological advantages for preventing and treating some specific diseases, such as analgesic, anti-inflammatory, hepatoprotective, antimetastatic, antithyroid, immunomodulatory, antitumor, rheumatoid arthritis, osteoarthritis, Alzheimer's, and improving the bioavailability of other drugs. However, its potential for clinical use through oral usage is hindered by water solubility and poor bioavailability. The low level of oral bioavailability is caused by low solubility in water and is photosensitive, susceptible to isomerization by UV light, which causes piperine concentration to decrease. Many different
... Show MoreA novel, safe and efficient method was developed to encapsulate a blend of essential oils (EOs) into biodegradable nanoparticles (NPs). The biodegradable and biocompatible nanoparticles were made from chitosan (CH) and lecithin (LE) . The quality of the essential oils was verified using gas chromatography/mass spectrometry (GC/MS). The synthesis of nanoparticles included emulsification, followed by sonication, homogenization, and extrusion. Transmission electron microscopy (TEM) indicated that the nanoparticles were spherical in shape with sizes ranging from 25 to 70 nm, while dynamic light scattering (DLS) showed high negative zeta potentials. The stability of the final formula was evaluated in gastric and intes
... Show MoreIn this research we prepared nanofibers by electrospinning from
poly (Vinyl Alcohol) /TiO2. The spectrum of the solution (Emission)
was studied and found to be at 772 nm, several process parameters
were such as concentration of TiO2 , and the effect of distance from
nozzle tip to the grounded collector (gap distance). The result of the
lower concentration of, the smaller the diameter of nanofiber is.
Increasing the gap distance will affect nanofibers diameter
ِabstract:In this research we prepared nanofibers by electrospinning from poly (Vinyl Alcohol) /TiO2. The spectrum of the solution (Emission) was studied and found to be at 772 nm, several process parameters were such as concentration of TiO2 , and the effect of distance from nozzle tip to the grounded collector (gap distance). The result of the lower concentration of, the smaller the diameter of nanofiber is. Increasing the gap distance will affect nanofibers diameter.
The present study explores the solar-induced photocatalytic degradation of reactive red (RR) and reactive turquoise (RT) dyes in a single system using TiO2 immobilized in xanthan gum (TiO2/XG), synthesized using the sol–gel dip-coating technique for direct precipitation. SEM-EDX, XRD, FTIR, and UV–Vis were used to assess the characteristics of the resulting catalyst. Moreover, the effects of different operating parameters, specifically pH, dye concentration, TiO2/XG concentration, H2O2 concentration, and contact time, were also investigated in a batch photocatalytic reactor. The immobilized TiO2/XG catalyst showed a slight adsorption degradation efficiency and then improved the RR and RT dye degradation activity (92.5 and 90.8%
... Show MoreIndium oxide In2O3 thin films fabricated using thermal evaporation of indium metal in vacuum on a glass substrate at 25oC using array mask, after deposition the indium films have been subjected to thermal oxidation at temperature 400 °C for 1h. The results of prepared Indium oxide reveal the oxidation method as a strong effect on the morphology and optical properties of the samples as fabricated. The band gap (Eg) of In2O3 films at 400 °C is 2.7 eV. Then, SEM and XRD measurements are also used to investigate the morphology and structure of the indium oxide In2O3 thin films. The antimicrobial activity of indium oxide In2O3 thin films was assessed against gram-negative bacterium using inhibition zone of bacteria which improved higher ina
... Show MoreBackground. Nanocoating of biomedical materials may be considered the most essential developing field recently, primarily directed at improving their tribological behaviors that enhance their performance and durability. In orthodontics, as in many medical fields, friction reduction (by nanocoatings) among different orthodontic components is considered a substantial milestone in the development of biomedical technology that reduces orthodontic treatment time. The objective of the current research was to explore the tribological behavior, namely, friction of nanocoated thin layer by tantalum (Ta), niobium (Nb), and vanadium (V) manufactured using plasma sputtering at 1, 2, and 3 hours on substrates made of 316L stainless steel (SS),
... Show More