In the present article, Nano crystalline SnS and SnS:3% Bi thin films were fabricated using thermal
evaporation with 400±20 nm thickness at room temperature at a rate deposition rate of 0.5 ±0.01nm
/sec then annealing for one hour at 573 K for photovoltaic application. The prepared samples were
characterized in order to investigate the structural, electrical, morphological, and optical properties
using diverse techniques. XRD and SEM were recorded to investigate the effect of doping and
annealing on structural and morphological possessions, respectively. XRD showed an SnS phase
with polycrystalline and appeared to form an orthorhombic structure, with the distinguish trend
along the (111) grade, varying crystallite size from (19.45-25.95) nm after doping and annealing.
SEM investigations of these films show extremely fine nanostructures and demonstrated excellent
adhesion, after Bi-doping, the nanostructures remained identical with a little change. UV/Visible
studies were made in the range of wavelength (300-1100) nm to calculate the optical constants for
these films. These measurements revealed a high value of the absorption coefficient and decrease
the optical energy gap values from (1.85 -1.6) eV after doping with 3% Bi. The characterization of
these films it can be chosen in the application of solar cells. On the other hand, the optical properties
of SnS films have been enhanced by Bi-doping.
The deposition process and investigation of the physical properties of tungsten trioxide (WO3) thin films before and after gamma irradiation are presented in this paper. The WO3 thin films were deposited, using the pulse laser deposition technique, on glass substrates at laser energies of 600mJ and 800mJ. After deposition, the samples were gamma irradiated with Co60. The structural and optical properties of polycrystalline WO3 thin films are presented and discussed before and after 5kGy gamma irradiation at the two laser energies. X-ray diffraction spectra revealed that all the films consisted of WO3 crystallized in the triclinic form; the dislocation density and lattice strain increased with the absorbed dosage of gamma
... Show MoreThe current study performed in order to detect and quantify epicatechin in two tea samples of Camellia sinensis (black and green tea) by thin layer chromatography (TLC) and high performance liquid chromatography (HPLC). Extraction of epicatechin from black and green tea was done by using two different methods: maceration (cold extraction method) and decoction (hot extraction method). Qualitative and quantitative determinations of epicatechin in two tea samples were investigated. Epicatechin identification was made by utilizing preliminary chemical tests and TLC. This identification was also boosted by HPLC and then quantified epicatechin in all ethyl acetate fractions of two tea samples. This research revealed the existence of epica
... Show MoreIn this research, Mn-doped TiO2 thin films were grown on glass, Si and OIT/glass substrates by R.F magnetron sputtering technique with thicknesses (250 nm) using TiO2:Mn target under Ar gas pressure and power of 100 Watt. Through the results of X-ray diffraction, the prepared thin films are of the polycrystallization type after the process of annealing at 600°C for two hour The average crystalline size were 145.32, 280.97 and 261.23 nm for (TiO2:Mn) thin film on glass, Si and OIT/glass substrates respectively, while the measured surface roughness is between 0.981nm and 1.14 nm. The fabricated (TiO2:Mn) thin film on glass sensors have high sensitivity for hydrogen( H2 reducing gas) compared to the sensitivity for hydrogen gas on Si and OIT/
... Show MoreOptical properties of chromium oxide (Cr2O3) thin films which were prepared by pulse laser deposition method, onto glass substrates. Different laser energy (500-900) mJ were used to obtain Cr2O3 thin films with thickness ranging from 177.3 to 372.4 nm were measured using Tolansky method. Then films were annealed at temperature equal to 300 °C. Absorption spectra were used to determine the absorption coefficient of the films, and the effects of the annealing temperature on the absorption coefficient were investigated. The absorption edge shifted to red range of wavelength, and the optical constants of Cr2O3 films increases as the annealing temperature increased to 300 °C. X-ray diffraction (XRD) study reveals that Cr2O3 thin films are a
... Show MoreObjective: The aim of this study was to develop a bioadhesive gel of gatifloxacin for the treatment of periodontal diseases.Methods: Periodontal gels of gatifloxacin were prepared using different hydrophilic polymers such as carbopol 940 (CP 940), carboxymethyl cellulose (CMC) and hydroxypropylmethyl cellulose (HPMC) in varied concentrations, either alone or as a combination. The prepared gels were evaluated for their physical appearance, pH, drug content, viscosity, bioadhesiveness and in vitro drug release profile. The influence of the type and the concentration of polymer on the drug release as well as on viscosity and mucoadhesiveness of prepared gels were investigated.Results: The prepared gels showed acceptable physical proper
... Show MoreEndoglucanase produced from Aspergillus flavus was purified by several steps including precipitation with 25 % ammonium sulphate followed by Ion –exchange chromatography, the obtained specific activity was 377.35 U/ mg protein, with a yield of 51.32 % .This step was followed by gel filtration chromatography (Sepharose -6B), when a value of specific activity was 400 U/ mg protein, with a yield of 48 %. Certain properties of this purified enzyme were investigated, the optimum pH of activity was 7 and the pH of its stability was 4.5, while the temperature stability was 40 °C for 60 min. The enzyme retained 100% of its original activity after incubation at 40 °C for 60 min; the optimum temperature for enzyme activity was 40 °C.
This study aims to formulate azithromycin oleogel to locally treat skin infections such as acne vulgaris and skin wound infection. Providing a form of azithromycin that can be administered topically is highly desired to prevent unwanted systemic complications including diarrhea, nausea, and abdominal pain. Additionally, it will avoid first pass metabolism, improves patient acceptance, provides an alternative in nauseated patients, decreases the dose by direct contact with the pathological site, and provides a noninvasive and convenient mode of administration. Furthermore, for treating wound infections, the gel will act as a scaffold biomaterial for wound closure besides its antibacterial effect. Herein, we propose the use of grapeseed oil-b
... Show MoreAbstract
The present investigation aimed to formulate a liquid self-microemulsifying drug delivery system (SMEDDS) of tacrolimus to enhance its oral bioavailability by improving its dispersibility and dissolution rate. Four liquid SMEDDS were prepared using maisine CC as oil phase, labrasol ALF as surfactant and transcutol HP as co-surfactant based on the solubility studies of tacrolimus in these components. The phase behavior of the components and the area of microemulsion were evaluated using pseudoternary phase diagrams. The formulations were also assessed for thermodynamic stability, robustness to dilution, self-emulsification time, drug content, globule size and polydispersity index. The prepared SMEDDS formulations exhibi
... Show MoreSpin coating technique has been applied in this work to prepared Xerogel films doped with Rhodamine 6G laser dyes. The solid host of laser dye modifies its spectroscopic properties with respect to liquid host. During the spin coating process the dye molecules suffer from changing their environment. The effects of three parameters were studied here: the spinning speed, multilayer coating and formaldehyde addition