For the generality of fuzzy ideals in TM-algebra, a cubic ideal in this algebra has been studied, such as cubic ideals and cubic T-ideals. Some properties of these ideals are investigated. Also, we show that the cubic T-ideal is a cubic ideal, but the converse is not generally valid. In addition, a cubic sub-algebra is defined, and new relations between the level subset and a cubic sub-algebra are discussed. After that, cubic ideals and cubic T-ideals under homomorphism are studied, and the image (pre-image) of cubic T-ideals is discussed. Finally, the Cartesian product of cubic ideals in Cartesian product TM-algebras is given. We proved that the product of two cubic ideals of the Cartesian product of two TM-algebras is also a cubic ideal.
Iraq is highly dependent on international markets to provide food for its residents. As imported food prices are highly dependent on crude oil prices in global markets, any shock in oil prices will have an impact on food consumption in the country. As a result, it is essential to study the demand for imported food at every time period. To the best of our knowledge as researchers, as not even a single study is available in the literature, this paper is considered the first to study the demand for imported food groups in Iraq. Therefore, the main objective of this research is to estimate demand elasticities for several imported food categories in Iraq. This study uses an Almost Ideal Demand System model to analyze the demand for imported f
... Show MoreIn this research the researcher had the concept of uncertainty in terms of types and theories of treatment and measurement as it was taken up are three types of indeterminacy and volatility and inconsistency
In this work, two different structures are proposed which is fuzzy real normed space (FRNS) and fuzzy real Pre-Hilbert space (FRPHS). The basic concept of fuzzy norm on a real linear space is first presented to construct space, which is a FRNS with some modification of the definition introduced by G. Rano and T. Bag. The structure of fuzzy real Pre-Hilbert space (FRPHS) is then presented which is based on the structure of FRNS. Then, some of the properties and related concepts for the suggested space FRN such as -neighborhood, closure of the set named , the necessary condition for separable, fuzzy linear manifold (FLM) are discussed. The definition for a fuzzy seminorm on is also introduced with the prove that a fuzzy seminorm on
... Show MoreBaghdad and the other Iraqis provinces have witnessed many of celebrations which have the significant effect on the souls of Arabic and Islamic people in general , and Iraqi people, especially the birthday and death of two al-kadhimen Imams(peace upon them) and others .From here the researcher begin to study the visiting of imam kadhimen (peace upon him) on 25 Rajab the commemoration of his sacrifice, simply because have implications of religious, ideological and cultural sectors which represents in finding the greatest flow of visitors .the problem of research appeared due to the clear difference in number of visitors during one day, beside the significant increase in number of visitors throu
... Show More In this paper, we proved the existence and uniqueness of the solution of nonlinear Volterra fuzzy integral equations of the second kind.
In this paper the definition of fuzzy normed space is recalled and its basic properties. Then the definition of fuzzy compact operator from fuzzy normed space into another fuzzy normed space is introduced after that the proof of an operator is fuzzy compact if and only if the image of any fuzzy bounded sequence contains a convergent subsequence is given. At this point the basic properties of the vector space FC(V,U)of all fuzzy compact linear operators are investigated such as when U is complete and the sequence ( ) of fuzzy compact operators converges to an operator T then T must be fuzzy compact. Furthermore we see that when T is a fuzzy compact operator and S is a fuzzy bounded operator then the composition TS and ST are fuzzy compact
... Show MoreThis research deals with the use of a number of statistical methods, such as the kernel method, watershed, histogram, and cubic spline, to improve the contrast of digital images. The results obtained according to the RSME and NCC standards have proven that the spline method is the most accurate in the results compared to other statistical methods.
In this article, a new efficient approach is presented to solve a type of partial differential equations, such (2+1)-dimensional differential equations non-linear, and nonhomogeneous. The procedure of the new approach is suggested to solve important types of differential equations and get accurate analytic solutions i.e., exact solutions. The effectiveness of the suggested approach based on its properties compared with other approaches has been used to solve this type of differential equations such as the Adomain decomposition method, homotopy perturbation method, homotopy analysis method, and variation iteration method. The advantage of the present method has been illustrated by some examples.
The soft sets were known since 1999, and because of their wide applications and their great flexibility to solve the problems, we used these concepts to define new types of soft limit points, that we called soft turning points.Finally, we used these points to define new types of soft separation axioms and we study their properties.
The notions ÇÂsemiÂgÂclosedness and ÇÂsemiÂgÂopenness were used to generalize and introduced new classes of separation axioms in ideal spaces. Many relations among several sorts of these classes are summarized, also.