For the generality of fuzzy ideals in TM-algebra, a cubic ideal in this algebra has been studied, such as cubic ideals and cubic T-ideals. Some properties of these ideals are investigated. Also, we show that the cubic T-ideal is a cubic ideal, but the converse is not generally valid. In addition, a cubic sub-algebra is defined, and new relations between the level subset and a cubic sub-algebra are discussed. After that, cubic ideals and cubic T-ideals under homomorphism are studied, and the image (pre-image) of cubic T-ideals is discussed. Finally, the Cartesian product of cubic ideals in Cartesian product TM-algebras is given. We proved that the product of two cubic ideals of the Cartesian product of two TM-algebras is also a cubic ideal.
Let h is Γ−(λ,δ) – derivation on prime Γ−near-ring G and K be a nonzero semi-group ideal of G and δ(K) = K, then the purpose of this paper is to prove the following :- (a) If λ is onto on G, λ(K) = K, λ(0) = 0 and h acts like Γ−hom. or acts like anti–Γ−hom. on K, then h(K) = {0}.(b) If h + h is an additive on K, then (G, +) is abelian.
Communication of the human brain with the surroundings became reality by using Brain- Computer Interface (BCI) based mechanism. Electroencephalography (EEG) being the non-invasive method has become popular for interaction with the brain. Traditionally, the devices were used for clinical applications to detect various brain diseases but with the advancement in technologies, companies like Emotiv, NeuoSky are coming up with low cost, easily portable EEG based consumer graded devices that can be used in various application domains like gaming, education etc as these devices are comfortable to wear also. This paper reviews the fields where the EEG has shown its impact and the way it has p
This study rigorously investigates three 3d transition metal carbide (TMC) structures via LDA and GGA approximations. It examines cohesive energy (Ecoh), Vickers hardness (Hv), mechanical stability, and electronic properties. Notably, most 3d TMCs exhibit higher cohesive energy than nitrides, and rs-TiC demonstrates a Vickers hardness of 25.66 GPa, outperforming its nitride counterpart. The study employs theoretical calculations to expedite research, revealing mechanical stability in CrC and MnC (GGA) and CrC (LDA in cc structure), while all 3d TMCs in rs and seven in zb structures show stability. Charge transfer and bonding analysis reveal enhanced covalency along the series, influenced by the interplay between p orbitals of carbon and d o
... Show MoreThe aim of this investigation is to present the idea of SAH – ideal , closed SAH – ideal and closed SAH – ideal with respect to an element , and s- of BH – algebra .
We detail and show theorems which regulate the relationship between these ideas and provide some examples in BH – algebra .
In this paper we tend to describe the notions of intuitionistic fuzzy asly ideal of ring indicated by (I. F.ASLY) ideal and, we will explore some properties and connections about this concept.
The research is an article that teaches some classes of fully stable Banach - Å modules. By using Unital algebra studies the properties and characterizations of all classes of fully stable Banach - Å modules. All the results are existing, and they've been listed to complete the requested information.
The aim of this paper is introducing the concept of (ɱ,ɳ) strong full stability B-Algebra-module related to an ideal. Some properties of (ɱ,ɳ)- strong full stability B-Algebra-module related to an ideal have been studied and another characterizations have been given. The relationship of (ɱ,ɳ) strong full stability B-Algebra-module related to an ideal that states, a B- -module Ӽ is (ɱ,ɳ)- strong full stability B-Algebra-module related to an ideal , if and only if for any two ɱ-element sub-sets and of Ӽɳ, if , for each j = 1, …, ɱ, i = 1,…, ɳ and implies Ạɳ( ) Ạɳ( have been proved..
Let Ḿ be a unitary R-module and R is a commutative ring with identity. Our aim in this paper to study the concepts T-ABSO fuzzy ideals, T-ABSO fuzzy submodules and T-ABSO quasi primary fuzzy submodules, also we discuss these concepts in the class of multiplication fuzzy modules and relationships between these concepts. Many new basic properties and characterizations on these concepts are given.