The aim of this article, we define new iterative methods called three-step type in which Jungck resolvent CR-iteration and resolvent Jungck SP-iteration are discussed and study rate convergence and strong convergence in Banach space to reach the fixed point which is differentially solve of nonlinear equations. The studies also expanded around it to find the best solution for nonlinear operator equations in addition to the varying inequalities in Hilbert spaces and Banach spaces, as well as the use of these iterative methods to approximate the difference between algorithms and their images, where we examined the necessary conditions that guarantee the unity and existence of the solid point. Finally, the results show that resolvent CR-iteration is faster than resolvent Jungck SP-iteration using Jungck resolvent estimation.
The existing investigation explains the consequence of irradiation of violet laser on the structure properties of MawsoniteCu6Fe2SnS8 [CFTS] thin films. The film was equipped by the utilization of semi-computerized spray pyrolysis technique (SCSPT), it is the first time that this technique is used in the preparation and irradiation using a laser. when the received films were processed by continuous red laser (700 nm) with power (>1000mW) for different laser irradiation time using different number of times a laser scan (0, 6, 9, 12, 15 and 18 times) with total irradiation time (0,30,45,60,75,90 min) respectively at room temperature.. The XRD diffraction gave polycrysta
... Show MoreIn this article four samples of HgBa2Ca2Cu2.4Ag0.6O8+δ were prepared and irradiated with different doses of gamma radiation 6, 8 and 10 Mrad. The effects of gamma irradiation on structure of HgBa2Ca2Cu2.4Ag0.6O8+δ samples were characterized using X-ray diffraction. It was concluded that there effect on structure by gamma irradiation. Scherrer, crystallization, and Williamson equations were applied based on the X-ray diffraction diagram and for all gamma doses, to calculate crystal size, strain, and degree of crystallinity. I
... Show More