Pumpkin waste powder was used as a coloring and strengthening filler in epoxy to prepare a natural gelcoat . The Pumpkin powder was mixed with different weight ratios (1, 2, 3, 4, 5, 6, 7, and 8%) to the epoxy matrix to select the best value of powder addition. The effect of the pumpkin particle size on the mechanical properties (impact, flexural, hardness, and wear loss) using two different sizes (2.5 and 1.25 microns) was studied. The impact strength increased from (10.09 KJ/ m2) for neat epoxy to (14.79 KJ/ m2) for epoxy with 1% of micron pumpkin fibers ( MPF) with particle size 2.5 micrometer and (14.21 KJ/ m2) for epoxy with 4% (1.25 MPF), flexural strength increased from (41.94 MPa) for neat epoxy to (~ 46 MPa) for epoxy with 1% of 2.5 MPF and to (50.17 MPa) for epoxy with 4% of 1.25 MPF, hardness of neat epoxy was (~ 77) and almost maintained its value for epoxy with 1% of 2.5 MPF and for epoxy with 4% of 1.25 MPF. At almost the weight fractions addition of pumpkin fibers to epoxy, the (EP/1.25MPF) composite shows a higher wear resistance than the (EP/2.5MPF) composite. The density, thermal conductivity, and water diffusion (for 1-4 weeks' immersion) of (EP/2.5MPF) and (EP/1.25MPF) composites were carried out at different weight percentages of pumpkin fibers. SEM and EDS techniques were employed to fix the microstructure and the elemental composition of (EP/2.5MPF) and (EP/1.25MPF) composites, respectively. The internal structure of the composites has been linked with their macroscopic characteristics, such as the color degree of natural gelcoats and their mechanical and thermal properties.
Orthogonal polynomials and their moments have significant role in image processing and computer vision field. One of the polynomials is discrete Hahn polynomials (DHaPs), which are used for compression, and feature extraction. However, when the moment order becomes high, they suffer from numerical instability. This paper proposes a fast approach for computing the high orders DHaPs. This work takes advantage of the multithread for the calculation of Hahn polynomials coefficients. To take advantage of the available processing capabilities, independent calculations are divided among threads. The research provides a distribution method to achieve a more balanced processing burden among the threads. The proposed methods are tested for va
... Show More An experimental and computational study is conducted to analyze the thermal performance of heat sinks and to pick up more profound information in this imperative field in the electronic cooling. One important approach to improve the heat transfer on the air-side of the heat exchanger is to adjust the fin geometry. Experiments are conducted to explore the impact of the changing of diverse operational and geometrical parameters on the heat sink thermal
performance. The working fluid used is air. Operational parameters includes: air Reynolds number (from 23597 to 3848.9) and heat flux (from 3954 to 38357 W/m
2 ). Conformational parameters includes: change the direction of air flow and the area of conduct
Sorption is a key factor in removal of organic and inorganic contaminants from their aqueous solutions. In this study, we investigated the removal of Xylenol Orange tetrasodium salt (XOTS) from its aqueous solution by Bauxite (BXT) and cationic surfactant hexadecyltrimethyl ammonium bromide modified Bauxite (BXT-HDTMA) in batch experiments. The BXT and BXT-HDTMA were characterized using FTIR, and SEM techniques. Adsorption studies were performed at various parameters i.e. temperature, contact time, adsorbent weight, and pH. The modified BXT showed better maximum removal efficiency (98.6% at pH = 9.03) compared to natural Bauxite (75% at pH 2.27), suggesting that BXT-HDTMA is an excellent adsorbent for the removal of XOTS from water. The equ
... Show MoreA pioneering idea for increasing the thermal performance of heat transfer fluids was to use ultrafine solid particles suspended in the base fluid. Nanofluids, synthesized by mixing solid nanometer sized particles at low concentrations with the base fluid, were used as a new heat transfer fluid and developed a remarkable effect on the thermophysical properties and heat transfer coefficient. For any nanofluid to be usable in heat transfer applications, the main concern is its long-term stability. The aim of this research is to investigate the effect of using four different surfactants (sodium dodecyl benzene sulfonate (SDBS), sodium dodecyl sulfate (SDS), cetyl trimethylammonium bromide (CTAB), and gum Arabic (GA)), each with three different
... Show MoreIn this work, oral lesions belong to 17 patients, 7 males and 10 females. Their ages range between 15 and 45 years. Follow up was conducted after one day, 7 days, 14 days, one month, and finally 3 months postoperatively. The study lasted for 1.5 year. Surgical diode laser with wavelength of 810 ± 20 nm, with two power levels of 10 and 15 W were used in contact and in non-contact mode via optical fiber. The postoperative outcome revealed; greater haemostatic capability, dry, sealed wound and noticeable lack in pain sensation