Pumpkin waste powder was used as a coloring and strengthening filler in epoxy to prepare a natural gelcoat . The Pumpkin powder was mixed with different weight ratios (1, 2, 3, 4, 5, 6, 7, and 8%) to the epoxy matrix to select the best value of powder addition. The effect of the pumpkin particle size on the mechanical properties (impact, flexural, hardness, and wear loss) using two different sizes (2.5 and 1.25 microns) was studied. The impact strength increased from (10.09 KJ/ m2) for neat epoxy to (14.79 KJ/ m2) for epoxy with 1% of micron pumpkin fibers ( MPF) with particle size 2.5 micrometer and (14.21 KJ/ m2) for epoxy with 4% (1.25 MPF), flexural strength increased from (41.94 MPa) for neat epoxy to (~ 46 MPa) for epoxy with 1% of 2.5 MPF and to (50.17 MPa) for epoxy with 4% of 1.25 MPF, hardness of neat epoxy was (~ 77) and almost maintained its value for epoxy with 1% of 2.5 MPF and for epoxy with 4% of 1.25 MPF. At almost the weight fractions addition of pumpkin fibers to epoxy, the (EP/1.25MPF) composite shows a higher wear resistance than the (EP/2.5MPF) composite. The density, thermal conductivity, and water diffusion (for 1-4 weeks' immersion) of (EP/2.5MPF) and (EP/1.25MPF) composites were carried out at different weight percentages of pumpkin fibers. SEM and EDS techniques were employed to fix the microstructure and the elemental composition of (EP/2.5MPF) and (EP/1.25MPF) composites, respectively. The internal structure of the composites has been linked with their macroscopic characteristics, such as the color degree of natural gelcoats and their mechanical and thermal properties.
Solar photovoltaic (PV) has many environmental benefits and it is considered to be a practical alternative to traditional energy generation. The electrical conversion efficiency of such systems is inherently limited due to the relatively high thermal resistance of the PV components. An approach for intensifying electrical and thermal production of air-type photovoltaic thermal (PVT) systems via applying a combination of fins and surface zigzags was proposed in this paper. This research study aims to apply three performance enhancers: case B, including internal fins; case C, back surface zigzags; and case D, combinations of fins and surface zigzags; whereas the baseline smooth duct rep
Wellbore stability is considered as one of the most challenges during drilling wells due to the
reactivity of shale with drilling fluids. During drilling wells in North Rumaila, Tanuma shale is
represented as one of the most abnormal formations. Sloughing, caving, and cementing problems
as a result of the drilling fluid interaction with the formation are considered as the most important
problem during drilling wells. In this study, an attempt to solve this problem was done, by
improving the shale stability by adding additives to the drilling fluid. Water-based mud (WBM)
and polymer mud were used with different additives. Three concentrations 0.5, 1, 5 and 10 wt. %
for five types of additives (CaCl2, NaCl, Na2S
Diazotization reaction between 1-(2,4,6-Trihydroxy-phenyl)-ethanone and diazonium salts was carried out resulting in ligand 4-(3-Acetyl-2,4,6-trihydroxy-phenylazo)-N-(5-methyl-isoxazol-3-yl)-benzenesulfonamide, this in turn reacted with the next metal ions (V4+ , Cr3+ , Mn2+ and Cu2+) forming stable complexes with unique geometries such as (Octahedral for both Cr3+ , Mn2+ and Cu2+ ,squar pyramidal for V4+). The creation of such complexes was detected by employing spectroscopic means involving ultraviolet-visible which proved the obtained geometries, fourier transfer proved the formation of azo group and and the coordination with metal ion through it. Pyrolysis (TGA & DSC) studies proved the coordination of water residues with me
... Show MoreThis article deals with the impact of including transverse ribs within the absorber tube of the concentrated linear Fresnel collector (CLFRC) system with a secondary compound parabolic collector (CPC) on thermal and flow performance coefficients. The enhancement rates of heat transfer due to varying governing parameters were compared and analyzed parametrically at Reynolds numbers in the range 5,000–13,000, employing water as the heat transfer fluid. Simulations were performed to solve the governing equations using the finite volume method (FVM) under various boundary conditions. For all Reynolds numbers, the average Nusselt number in the circular tube in the CLFRC system with ribs was found to be larger than that of the plain abs
... Show MoreSilver selenide telluride Semiconducting (Ag2Se0.8Te0.2) thin films were by thermal evaporation at RT with thickness350 nm at annealing temperatures (300, 348, 398, and 448) °K for 1 hour on glass substrates .using X-ray diffraction, the structural characteristics were calculated as a function of annealing temperatures with no preferential orientation along any plane. Atomic force microscopy (AFM) and X-ray techniques are used to analyze the Ag2SeTe thin films' physical makeup and properties. AFM techniques were used to analyze the surface morphology of the Ag2SeTe films, and the results showed that the values for average diameter, surface roughness, and grain size mutation increased with annealing temperature (116.36-171.02) nm The transm
... Show MoreSilver selenide telluride Semiconducting (Ag2Se0.8Te0.2) thin films were by thermal evaporation at RT with thickness350 nm at annealing temperatures (300, 348, 398, and 448) °K for 1 hour on glass substrates .using X-ray diffraction, the structural characteristics were calculated as a function of annealing temperatures with no preferential orientation along any plane. Atomic force microscopy (AFM) and X-ray techniques are used to analyze the Ag2SeTe thin films' physical makeup and properties. AFM techniques were used to analyze the surface morphology of the Ag2SeTe films, and the results showed that the values for average diameter, surface roughness, and grain size mutation increased with annealing temperature (116.36-171.02) nm The transm
... Show MoreBy using governing differential equation and the Rayleigh-Ritz method of minimizing the total potential energy of a thermoelastic structural system of isotropic thermoelastic thin plates, thermal buckling equations were established for rectangular plate with different fixing edge conditions and with different aspect ratio. The strain energy stored in a plate element due to bending, mid-plane thermal force and thermal bending was obtained. Three types of thermal distribution have been considered these are: uniform temperature, linear distribution and non-linear thermal distribution across thickness. It is observed that the buckling strength enhanced considerably by additional clamping of edges. Also, the thermal buckling temperatures and
... Show MoreBackground: This study was conducted to assess the effect of sonic activation and bulk placement of resin composite in comparison to horizontal incremental placement on the fracture resistance of weakened premolar teeth. Materials and method: Sixty sound human single-rooted maxillary premolars extracted for orthodontic purposes were used in this study. Teeth were divided into six groups of ten teeth each: Group 1 (sound unprepared teeth as a control group), Group 2 (teeth prepared with MOD cavity and left unrestored), Group 3 (restored with SonicFill™ composite), Group 4 (restored with Quixfil™ composite), Group 5 (restored with Tertic EvoCeram® Bulk Fill composite) and Group 6 (restored with Universal Tetric EvoCeram® co
... Show MoreIn this research, a novel thin film Si-GO10 and nanopowders Si-GO30 of silica-graphene oxide (GO) composite were prepared via the sol–gel method and deposited on glass substrates using spray pyrolysis. X-ray diffraction (XRD) results showed a relatively strong peak in the graphite layer that corresponds to the (002) plane. Transmission electron microscope (TEM) images showed that SiO2 nanoparticles were randomly distributed on the surface of GO plates, and the particle size in these nanopowders was below 50 nm. Field emission scanning electron microscopy (FESEM) analysis demonstrated that silica nanoparticles on the surface of GO plates exhibited almost spherical and rod-like nanoparticle shape, which in turn confirmed the formation of Si
... Show MoreNew nano composites containing Schiff bases have been synthesized and presented in this paper. All compounds have been categorized through FT-IR and some of them by H-NMR spectroscopy. The antibacterial performance of the prepared compounds has been investigated according to the agar diffusion method. The compounds (P1,P2,C1, and C2) have shown, in general, significant inhibition against bacterial.