Pumpkin waste powder was used as a coloring and strengthening filler in epoxy to prepare a natural gelcoat . The Pumpkin powder was mixed with different weight ratios (1, 2, 3, 4, 5, 6, 7, and 8%) to the epoxy matrix to select the best value of powder addition. The effect of the pumpkin particle size on the mechanical properties (impact, flexural, hardness, and wear loss) using two different sizes (2.5 and 1.25 microns) was studied. The impact strength increased from (10.09 KJ/ m2) for neat epoxy to (14.79 KJ/ m2) for epoxy with 1% of micron pumpkin fibers ( MPF) with particle size 2.5 micrometer and (14.21 KJ/ m2) for epoxy with 4% (1.25 MPF), flexural strength increased from (41.94 MPa) for neat epoxy to (~ 46 MPa) for epoxy with 1% of 2.5 MPF and to (50.17 MPa) for epoxy with 4% of 1.25 MPF, hardness of neat epoxy was (~ 77) and almost maintained its value for epoxy with 1% of 2.5 MPF and for epoxy with 4% of 1.25 MPF. At almost the weight fractions addition of pumpkin fibers to epoxy, the (EP/1.25MPF) composite shows a higher wear resistance than the (EP/2.5MPF) composite. The density, thermal conductivity, and water diffusion (for 1-4 weeks' immersion) of (EP/2.5MPF) and (EP/1.25MPF) composites were carried out at different weight percentages of pumpkin fibers. SEM and EDS techniques were employed to fix the microstructure and the elemental composition of (EP/2.5MPF) and (EP/1.25MPF) composites, respectively. The internal structure of the composites has been linked with their macroscopic characteristics, such as the color degree of natural gelcoats and their mechanical and thermal properties.
Fabrication of solar cell prepared by thermal spray and vacuum thermal evaporation method on silicon wafer(n-type) and studying its efficiency. The film have been deposited on three layers(ZnO then CdS and CdTe) on Si and glass respectively.Direct energy gap was calculated and equal to (4.3,3.4,3)eV and indirect energy gap equal to (3.5,2.5,1.5)eV respectively . Efficiency was calculated for the cell of area 2cm2 it was equal to 0.14%.
Abstract. Silver, Indium Selenium thin film with a thickness (5001±30) nm, deposited by thermal evaporation methods at RT and annealing3temperature (Ta=400, 500 and 600) K on a substrate of glass to study structural and optical properties of thin films and on p-Si wafer to fabricate the AgInSe2/p-Si heterojunction solar cell. XRD analysis shows that the AgInSe2 (AIS) deposited film at RT and annealing3temperature (Ta=400, 500 and 600) K have polycrystalline structure. The average grain size has been estimated from AFM images. The energy gap was estimated from the optical transmittance using a spectrometer type (UV.-Visible 1800 spectra photometer). From I-V characterization , the photovoltaic parameters such as, open-circuit voltage, short
... Show MoreCopper, and its, alloys and composites (being the matrix), are broadly used in the electronic as well as bearing materials due to the excellent thermal and electrical conductivities it has.
In this study, powder metallurgy technique was used for the production of copper graphite composite with three volume perc ent of graphite. Processing parameters selected is (900) °C sintering temperature and (90) minutes holding time for samples that were heated in an inert atmosphere (argon gas). Wear test results showed a pronounced improvement in wear resistance as the percent of graphite increased which acts as solid lubricant (where wear rate was decreased by about 88% as compared with pure Cu). Microhardness and
... Show MoreCreep testing is an important part of the characterization of composite materials. It is crucial to determine long-term deflection levels and time-to-failure for these advanced materials. The work is carried out to investigate creep behavior on isotropic composite columns. Isotropy property was obtained by making a new type of composite made from a paste of particles of carbon fibers mixed with epoxy resin and E-glass particles mixed with epoxy resin. This type of manufacturing process can be called the compression mold composite or the squeeze mold composite. Experimental work was carried out with changing the fiber concentration (30, 40 and 50% mass fraction), cross section shape, and type of composite. The creep results showed that th
... Show MoreA thin CdS Films have been evaporated by thermal evaporation technique with different thicknesses (500, 1000, 1500 and 2000Å) and different duration times of annealing (60, 120 180 minutes) under 573 K annealing temperature, the vacuum was about 8 × 10-5 mbar and substrate temperature was 423 K. The structural properties of the films have been studied by X- ray diffraction technique (XRD). The crystal growth became stronger and more oriented as the film thickness (T) and duration time of annealing ( Ta) increases.
CdS films were prepared by thermal evaporation at pressure (10-6torr) of 1μm thickness onto glass substrate by using (Mo) boat. The optical properties of CdS films, absorbance, transmittance and reflectance were studied in wavelength range of (300-900)nm. The refractive index, extinction coefficient, and absorption coefficient were also studied. It's found that CdS films have allowed direct and forbidden transition with energy gap 2.4eV and 2.25eV respectively and it also has high absorption coefficient (α >104cm-1).
In this work, we have investigated optical properties of the thermally evaporation PbS/CdS thin films. The optical constant such as (refractive index n, dielectric constant εi,r and Extinction coefficient κ) of the deposition films were obtained from the analysis of the experimental recorded transmittance spectral data. The optical band gap of PbS/CdS films is calculate from (αhυ)1/2 vs. photon energy curve.
In the current study, CuAl0.7In0.3Te2 thin films with 400 nm thickness were deposited on glass substrates using thermal evaporation technique. The films were annealed at various annealing temperatures of (473,573,673 and 773) K. Furthermore, the films were characterized by X-ray Diffraction spectroscopy (XRD), field emission scanning electron microscopy (FESEM), atomic force microscopy (AFM), and Ultra violet-visible (UV–vis). XRD patterns confirm that the films exhibit chalcopyrite structure and the predominant diffraction peak is oriented at (112). The grain size and surface roughness of the annealed films have been reported. Optical properties for the synthesized films including, absorbance, transmittance, dielectric constant, and refr
... Show MoreBackground: Bowel preparation prior to
colonic surgery usually includes antibiotic
therapy together with mechanical bowel
preparation which may cause discomfort to the
patients, prolonged hospitalization and water
& electrolyte imbalance.
Objective: to assess whether elective colon
and rectal surgery may be safely performed
without preoperative mechanical bowel
preparation.
Method: the study includes all patients who
had elective large bowel resection at Medical
City – Baghdad Teaching Hospital between
Feb, 2007 to Jan, 2010. Emergency operations
were not included. The patients were randomly
assigned to the 2 study groups (with or without
mechanical bowel preparation.
Results: A to