Pumpkin waste powder was used as a coloring and strengthening filler in epoxy to prepare a natural gelcoat . The Pumpkin powder was mixed with different weight ratios (1, 2, 3, 4, 5, 6, 7, and 8%) to the epoxy matrix to select the best value of powder addition. The effect of the pumpkin particle size on the mechanical properties (impact, flexural, hardness, and wear loss) using two different sizes (2.5 and 1.25 microns) was studied. The impact strength increased from (10.09 KJ/ m2) for neat epoxy to (14.79 KJ/ m2) for epoxy with 1% of micron pumpkin fibers ( MPF) with particle size 2.5 micrometer and (14.21 KJ/ m2) for epoxy with 4% (1.25 MPF), flexural strength increased from (41.94 MPa) for neat epoxy to (~ 46 MPa) for epoxy with 1% of 2.5 MPF and to (50.17 MPa) for epoxy with 4% of 1.25 MPF, hardness of neat epoxy was (~ 77) and almost maintained its value for epoxy with 1% of 2.5 MPF and for epoxy with 4% of 1.25 MPF. At almost the weight fractions addition of pumpkin fibers to epoxy, the (EP/1.25MPF) composite shows a higher wear resistance than the (EP/2.5MPF) composite. The density, thermal conductivity, and water diffusion (for 1-4 weeks' immersion) of (EP/2.5MPF) and (EP/1.25MPF) composites were carried out at different weight percentages of pumpkin fibers. SEM and EDS techniques were employed to fix the microstructure and the elemental composition of (EP/2.5MPF) and (EP/1.25MPF) composites, respectively. The internal structure of the composites has been linked with their macroscopic characteristics, such as the color degree of natural gelcoats and their mechanical and thermal properties.
This research discloses the synthesis of various polyester resins, the polyesters containing homoring aromatic and others heterocyclic were synthesized by the condensation polymerization of suitable monomers (which are containing variety function groups in different structures) with phthalic anhydride. The main objective is synthesis of new polyester with keeping a reasonable electrical insulating behavior. The structural of polymer was characterized by Fourier Transform infra-red spectroscopy FTIR and HNMR. The dielectric constant (real ε' and imaginary parts ε") and AC conductivity (σAC) for all the polyester samples are studied by varying the frequency (30, 50, 70, 90, 120, 300, 500Hz and 1KHZ) at 25⁰ C. Indeed, study of the electri
... Show MoreAs the reservoir conditions are in continuous changing during its life, well production rateand its performance will change and it needs to re-model according to the current situationsand to keep the production rate as high as possible.Well productivity is affected by changing in reservoir pressure, water cut, tubing size andwellhead pressure. For electrical submersible pump (ESP), it will also affected by numberof stages and operating frequency.In general, the production rate increases when reservoir pressure increases and/or water cutdecreases. Also the flow rate increase when tubing size increases and/or wellhead pressuredecreases. For ESP well, production rate increases when number of stages is increasedand/or pump frequency is
... Show MoreIndium antimony (InSb) alloy were prepared successfully. The InSb films were prepared by flash thermal evaporation technique on glass and Si p-type substrate at various substrate temperatures (Ts= 423,448,473, and 498 K). The compounds concentrations for prepared alloy were examined by using Atomic Absorption Spectroscopy (AAS) and X-ray fluorescence (XRF). The structure of prepared InSb alloy and films deposited at various Ts were examined by X-ray diffraction (XRD).It was found that all prepared InSb alloy and films were polycrystalline with (111) preferential direction . The electrical properties of the films are studied with the varying Ts. It is found that
... Show MoreIn the present work a modification was made on three equations to represent the
experiment data which results for Iraqi petroleum and natural asphalt. The equations
have been developed for estimating the chemical composition and physical properties
of asphalt cement at different temperature and aging time. The standard deviations of
all equations were calculated.
The modified correlation related to the aging time and temperature with penetration
index and durability index of aged petroleum and natural asphalts were developed.
The first equation represents the relationship between the durability index with aging
time and temperature.
loge(DI)=a1+0.0123(2loge T
... Show MoreThe varied thermal conductivity (insulation) of silica aerogel with heating for different pH has been investigated, it has been depended on ambient pressure drying method in the preparing silica aerogel samples, also six different pH of samples (1, 2, 3, 7, 8 and 9) were treated under five degree of heating with (50,100,150,200 and 250) ᴼC. This technique is important to test the carry-outs hydrophobic silica to temperature without high-quality material changes in the basic characteristics. The hot-wire technique is used in this work to examine the thermal conductivity, Fourier Transform Infrared Spectroscopy (FTIR) depended to characterize the bonds and their artificial by heating. Resu
... Show MoreIn this research the specific activity of natural radionuclides 226Ra, 232Th and 40K were determined by sodium iodide enhanced by thallium NaI(TI) detector and assessed the annual effective dose in Dielac 1 and 2 and Nactalia 1 and 2 for children of less than 1 year which are available in Baghdad markets. The specific activity of 40K has the greater value in all the types which is in the range of allowed levels globally that suggested by UNSCEAR. The mean value of annual effective doses were 2.92, 4.005 and 1.6325 mSv/y for 226Ra, 232Th and 40K respectively.
The study is about Maxwell , three dimensions of non – Newtonian fluid. Method of th Homotopy applied to analysis mass transfer and heat with thermophoresis effects. (Sc), Impact of therrmophoretic (𝜏), magnetic (M), Biot (γ), radiation (Rd),Schmidt Prandtle (Pr) parameters and ratio parameter(β) on concentration, temperature are offered in the paper.
The thermal performance of indirect expansion solar assisted heat pump, IX-SAHP, was investigated experimentally under Iraqi climate. An Indirect-Solar Assisted Heat Pump system was designed, built, instrumented and tested. Experimental tests were conducted by varying the controlling parameters to investigate their effects on the thermal performance of the IX-SAHP such as cooling water flow rate, heating water flow rate, ambient temperature and solar radiation intensity. The investigation covered values of cooling water flow rate of (2, 3, 4, 5 l/min) and heating water flow rate of (2, 3, 4, 5 l/min) under meteorological condition of Baghdad from November 2014 to January 2015.
The results indicated that the performance of the IX-
... Show More