A novel technique Sumudu transform Adomian decomposition method (STADM), is employed to handle some kinds of nonlinear time-fractional equations. We demonstrate that this method finds the solution without discretization or restrictive assumptions. This method is efficient, simple to implement, and produces good results. The fractional derivative is described in the Caputo sense. The solutions are obtained using STADM, and the results show that the suggested technique is valid and applicable and provides a more refined convergent series solution. The MATLAB software carried out all the computations and graphics. Moreover, a graphical representation was made for the solution of some examples. For integer and fractional order problems, solution graphs are shown. The results confirmed that the accuracy of this technique converges to the integer order of the issues.
The main work of this paper is devoted to a new technique of constructing approximated solutions for linear delay differential equations using the basis functions power series functions with the aid of Weighted residual methods (collocations method, Galerkin’s method and least square method).
In this paper, Touchard polynomials (TPs) are presented for solving Linear Volterra integral equations of the second kind (LVIEs-2k) and the first kind (LVIEs-1k) besides, the singular kernel type of this equation. Illustrative examples show the efficiency of the presented method, and the approximate numerical (AN) solutions are compared with one another method in some examples. All calculations and graphs are performed by program MATLAB2018b.
The aim of the thesis is to estimate the partial and inaccessible population groups, which is a field study to estimate the number of drug’s users in the Baghdad governorate for males who are (15-60) years old.
Because of the absence of data approved by government institutions, as well as the difficulty of estimating the numbers of these people from the traditional survey, in which the respondent expresses himself or his family members in some cases. In these challenges, the NSUM Network Scale-Up Method Is mainly based on asking respondents about the number of people they know in their network of drug addicts.
Based on this principle, a statistical questionnaire was designed to
... Show Morefashion designers who have benefited greatly from the mobilization of ancient aesthetic ideas in the heritage of the people and guaranteed in their productions so that there is no change In the aesthetic value created by the designers of the research in the ancient heritage to find new signs that reflect the connection of man to the present as the aesthetic value of all the man created by the designs of fabrics and fashion through the ages The problem of research was determined in the absence of a precise understanding of the nature of classical thought in fashion and the absence of a clear perception of the sustainability of this thought in contemporary fashion. He
... Show MoreThis paper studies a novel technique based on the use of two effective methods like modified Laplace- variational method (MLVIM) and a new Variational method (MVIM)to solve PDEs with variable coefficients. The current modification for the (MLVIM) is based on coupling of the Variational method (VIM) and Laplace- method (LT). In our proposal there is no need to calculate Lagrange multiplier. We applied Laplace method to the problem .Furthermore, the nonlinear terms for this problem is solved using homotopy method (HPM). Some examples are taken to compare results between two methods and to verify the reliability of our present methods.
In this paper, the effective computational method (ECM) based on the standard monomial polynomial has been implemented to solve the nonlinear Jeffery-Hamel flow problem. Moreover, novel effective computational methods have been developed and suggested in this study by suitable base functions, namely Chebyshev, Bernstein, Legendre, and Hermite polynomials. The utilization of the base functions converts the nonlinear problem to a nonlinear algebraic system of equations, which is then resolved using the Mathematica®12 program. The development of effective computational methods (D-ECM) has been applied to solve the nonlinear Jeffery-Hamel flow problem, then a comparison between the methods has been shown. Furthermore, the maximum
... Show MoreScheduling Timetables for courses in the big departments in the universities is a very hard problem and is often be solved by many previous works although results are partially optimal. This work implements the principle of an evolutionary algorithm by using genetic theories to solve the timetabling problem to get a random and full optimal timetable with the ability to generate a multi-solution timetable for each stage in the collage. The major idea is to generate course timetables automatically while discovering the area of constraints to get an optimal and flexible schedule with no redundancy through the change of a viable course timetable. The main contribution in this work is indicated by increasing the flexibility of generating opti
... Show MoreDarcy-Weisbach (D-W) is a typical resistance equation in pressured flow; however, some academics and engineers prefer Hazen-Williams (H-W) for assessing water distribution networks. The main difference is that the (D-W) friction factor changes with the Reynolds number, while the (H-W) coefficient is a constant value for a certain material. This study uses WaterGEMS CONNECT Edition update 1 to find an empirical relation between the (H-W) and (H-W) equations for two 400 mm and 500 mm pipe systems. The hydraulic model was done, and two scenarios were applied by changing the (H-W) coefficient to show the difference in results of head loss. The results showed a strong relationship between both equations with correlation coefficients of 0.999,
... Show More