A novel technique Sumudu transform Adomian decomposition method (STADM), is employed to handle some kinds of nonlinear time-fractional equations. We demonstrate that this method finds the solution without discretization or restrictive assumptions. This method is efficient, simple to implement, and produces good results. The fractional derivative is described in the Caputo sense. The solutions are obtained using STADM, and the results show that the suggested technique is valid and applicable and provides a more refined convergent series solution. The MATLAB software carried out all the computations and graphics. Moreover, a graphical representation was made for the solution of some examples. For integer and fractional order problems, solution graphs are shown. The results confirmed that the accuracy of this technique converges to the integer order of the issues.
A new technique for embedding image data into another BMP image data is presented. The image data to be embedded is referred to as signature image, while the image into which the signature image is embedded is referred as host image. The host and the signature images are first partitioned into 8x8 blocks, discrete cosine transformed “DCT”, only significant coefficients are retained, the retained coefficients then inserted in the transformed block in a forward and backward zigzag scan direction. The result then inversely transformed and presented as a BMP image file. The peak signal-to-noise ratio (PSNR) is exploited to evaluate the objective visual quality of the host image compared with the original image.
An efficient modification and a novel technique combining the homotopy concept with Adomian decomposition method (ADM) to obtain an accurate analytical solution for Riccati matrix delay differential equation (RMDDE) is introduced in this paper . Both methods are very efficient and effective. The whole integral part of ADM is used instead of the integral part of homotopy technique. The major feature in current technique gives us a large convergence region of iterative approximate solutions .The results acquired by this technique give better approximations for a larger region as well as previously. Finally, the results conducted via suggesting an efficient and easy technique, and may be addressed to other non-linear problems.
Graphite nanoparticles were successfully synthesized using mixture of H2O2/NH4OH with three steps of oxidation. The process of oxidations were analysis by XRD and optics microscopic images which shows clear change in particle size of graphite after every steps of oxidation. The method depend on treatments the graphite with H2O2 in two steps than complete the last steps by reacting with H2O2/NH4OH with equal quantities. The process did not reduces the several sheets for graphite but dispersion the aggregates of multi-sheets carbon when removed the Van Der Waals forces through the oxidation process.
In this paper we shall generalize fifth explicit Runge-Kutta Feldberg(ERKF(5)) and Continuous explicit Runge-Kutta (CERK) method using shooting method to solve second order boundary value problem which can be reduced to order one.These methods we shall call them as shooting Continuous Explicit Runge-Kutta method, the results are computed using matlab program.
The aim of this paper is to present the numerical method for solving linear system of Fredholm integral equations, based on the Haar wavelet approach. Many test problems, for which the exact solution is known, are considered. Compare the results of suggested method with the results of another method (Trapezoidal method). Algorithm and program is written by Matlab vergion 7.
We present a reliable algorithm for solving, homogeneous or inhomogeneous, nonlinear ordinary delay differential equations with initial conditions. The form of the solution is calculated as a series with easily computable components. Four examples are considered for the numerical illustrations of this method. The results reveal that the semi analytic iterative method (SAIM) is very effective, simple and very close to the exact solution demonstrate reliability and efficiency of this method for such problems.
Estimation of the unknown parameters in 2-D sinusoidal signal model can be considered as important and difficult problem. Due to the difficulty to find estimate of all the parameters of this type of models at the same time, we propose sequential non-liner least squares method and sequential robust M method after their development through the use of sequential approach in the estimate suggested by Prasad et al to estimate unknown frequencies and amplitudes for the 2-D sinusoidal compounds but depending on Downhill Simplex Algorithm in solving non-linear equations for the purpose of obtaining non-linear parameters estimation which represents frequencies and then use of least squares formula to estimate
... Show Moreطريقة سهلة وبسيطة ودقيقة لتقدير السبروفلوكساسين في وجود السيفاليكسين او العكس بالعكس في خليط منهما. طبقت الطريقة المقترحة بطريقة الاضافة القياسية لنقطة بنجاح في تقدير السبروفلوكساسين بوجود السيفاليكسين كمتداخل عند الاطوال الموجية 240-272.3 نانوميتر وبتراكيز مختلفة من السبروفلوكساسين 4-18 مايكروغرام . مل-1 وكذلك تقدير السيفاليكسين بوجود السبروفلوكساسين الذي يتداخل باطوال موجية 262-285.7 نانوميتر وبتراكيز مخ
... Show More