In this study, an efficient photocatalyst for water splitting was developed. The Cr2O3 and TiO2 nanoparticles (Cr2O3-TNPs) nanocomposite with (Chitosan extract) was created using ecologically friendly methods, such as the impregnation technique as TiO2 exhibits nano spherical (TNPs) shape structure. According to the researchers, this nanocomposite material enhanced its ability to absorb ultraviolet light while also speeding up the recombination of photogenerated electrons and holes. The TNPs and prepared Cr2O3-TNPs were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), energy dispersive x-ray spectroscopy (EDX), and UV-visible absorbance. The XRD of TNPs showed a Tetragonal phase with 8.9 nm of average crystallite size and 14.2 nm for nanocomposite. FE-SEM images showed that the average particle size in the range of (12.5-57.5) nm and UV-VIS absorbance has energy gap of 3.8 eV, while the energy gap of Cr2O3-TNPs is 2.8 eV. It was found that the performance of photocatalysts of the nanocomposite for hydrogen generation was superior. It gave the highest rate of hydrogen production (3.6) ml at 80 min when exposed to ultraviolet light. Moreover, the nanocomposite revealed high H2 production rate under ultraviolt light irradiation (λ < 400 nm). The Cr2O3-TNps have high photocatalytic effectiveness due to their wide ultraviolt light photoresponse range and excellent separation of photogenerated electrons and holes.
The oxidation desulphurization assisted by ultrasound waves was applied to the desulphurization of heavy naphtha. Hydrogen peroxide and acetic acid were used as oxidants, ultrasound waves as phase dispersion, and activated carbon as solid adsorbent. When the oxidation desulphurization (ODS) process was followed by a solid adsorption step, the performance of overall Sulphur removal was 89% for heavy naphtha at the normal condition of pressure and temperature. The process of (ODS) converts the compounds of Sulphur to sulfoxides/ sulfones, and these oxidizing compounds can be removed by activated carbon to produce fuel with low Sulphur content. The absence of any components (hydrogen peroxide, acetic acid, ultrasound waves and activated car
... Show MoreThis work presents a design for a pressure swing adsorption process (PSA) to separate oxygen from air with approximately 95% purity, suitable for different numbers of columns and arrangements. The product refill PSA process was found to perform 33% better (weight of zeolite required or productivity) than the pressure equalization process. The design is based on the adsorption equilibrium of a binary mixture of O2 and N2 for two of the most commonly used adsorbents, 5A & 13X, and extension from a single column approach. Zeolite 13X was found to perform 6% better than zeolite 5A. The most effective variables were determined to be the adsorption step time and the operational pressure. Increasing the adsorption step
... Show MoreNowadays, many new technologies developed in a lot of countries. These technologies are promising in many areas such as environmental monitoring, precision agriculture as well as in animal production. The purpose of this study was to define a better understanding of how new and advanced technologies affect the agriculture and livestock sector alike. Although agriculture and animal husbandry are among the most important sectors, advanced equipment and information technology cannot be used adequately. This situation leads to low production efficiency. It is also known that there can be a significant difference in temperature between the position of the climate control sensor (room temperature) and the area occupied by the animal. This study e
... Show MoreIn this work, we have used the QCD dynamic scenario of the quark gluon interaction to investigate and study photon emission theoretically based on quantum theory. The QCD theory is implemented by deriving the photon emission rate equation of the state of ideal QGP at a chemical potential. The photon rate of the quark-gluon interaction has to be calculated for the anti up-gluon interaction in the g → γ system at the temperature of system with critical temperature ( 132.38, , and 198.57) MeV and photon energy ( GeV. We investigated a significant effect of critical temperature, strength coupling, and photon energy on the photon rate contribution. Here, the increased photon emission rate and decreased streng
... Show MoreThe General Company for Iraqi Cement is regarded as one of the companies that contribute to support the Iraqi economy. It contributes to provide the material of cement which fulfils the consumer and investment need in the markets in competitive prices and not to resort to the importing of the cement from abroad. That would save a great share of the purchase parity of the poor sectors of society. The estimation of production function will contribute to putting the company.
The application functions of the standard production of benefit critical to clarify the actual relationship between production & its components, & allow to clarify the i
... Show MoreSports and legend rooted deep in human history, and although they meet in the oldest epics as was the hero Gilgamesh legend and a hero of the heroes of wrestling has been named the oldest regular sports tournament in history in his name, a Algeljamchih Games which will be held events in Mesopotamia in August of each year and will continue nine days and take place in competitions in more than a sports game ..
In our time re-production of sports legends to serve the objectives of the huge investment both sports on the commercialization level or at other levels of marketing, including political marketing.
In this context, a move sports media for the production of myths we studied Semiaiaa in an effort to learn how the production proce
The faujasite type Y zeolite catalyst was prepared from locally available kaolin. For prepared faujasite type NaY zeolite X-ray, FT-IR, BET pore volume and surface area, and silica/ alumina were determined. The Xray and FT-IR show the compatibility of prepared catalyst with the general structure of standard zeolite Y. BET test shows that the surface area and pore volume of prepared catalyst were 360 m2 /g and 0.39 cm3 /g respectively.
The prepared faujasite type NaY zeolite modified by exchanging sodium ion with ammonium ion using ammonium nitrate and then ammonium ion converted to hydrogen ion. The maximum sodium ion exchange with ammonium ion was 53.6%. The catalytic activity of prepared faujasite type NaY, NaNH4Y and NaHY zeolites
In this work, fluid catalytic cracking of vacuum gas oil to produce gasoline over prepared faujasite type Y zeolite was investigated using experimental laboratory plant scale of fluidized bed reactor.
The catalytic activity of prepared faujasite type NaY, NaNH4Y and NaHY zeolites was investigated. The cracking process was carried out in the temperature range 440 to 500 oC, weight hourly space velocity (WHSV) range 10 to 25 h-1 ,and atmospheric pressure . The catalytic activities of the prepared faujasite type NaY , NaNH4Y and NaHY zeolites were determined in terms of vacuum gas oil (VGO) conversion, and gasoline yield . The conversion at 500oC and WHSV10 hr-1 by using faujasite type NaY, NaNH4Y and NaHY zeolite were 50.2%, 64.1% and 6
In a resource-limited world, there is an urgent need to develop new economic models, from the traditional unsustainable industrial model of product consumption and disposal, to a new model based on the concepts of sustainability in its comprehensive sense, the so-called circular economy, using fewer resources in manufacturing processes and changing practices in product disposal to waste, by removing its use, recycling and manufacturing to start another manufacturing process. In an era of intense competition in domestic and global markets, the importance of the circular economy is highlighted in its ability to strengthen the competitiveness of enterprises in those markets, by reducing the cost and increasing the quality of the pro
... Show MoreThe study of green colour in glass has a special importance on the glass quality, specially the effect of ferrous oxides content of the limestone. Results obtained that there was a reduction in green colour when different ferrous oxide contents in the limestone were added in glass production, limestone sources from two quarries, and the first contains 0.67% ferrous oxide and the second posses less ferrous oxide.
Reduction of green colour showed higher transmittance12% and it could be suggested that reduction of ferrous oxides content in the limestone is of special importance on the optical properties of glass.