Preferred Language
Articles
/
jih-2853
Producing Hydrogen Energy Using Cr2O3-TiO2 Nanocomposite with Animal (Chitosan) Extract via Photocatalaysis

      In this study, an efficient photocatalyst for water splitting was developed. The Cr2O3 and TiO2 nanoparticles (Cr2O3-TNPs) nanocomposite with (Chitosan extract) was created using ecologically friendly methods, such as the impregnation technique as TiO2 exhibits nano spherical (TNPs) shape structure. According to the researchers, this nanocomposite material enhanced its ability to absorb ultraviolet light while also speeding up the recombination of photogenerated electrons and holes. The TNPs and prepared Cr2O3-TNPs were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), energy dispersive x-ray spectroscopy (EDX), and UV-visible absorbance. The XRD of TNPs showed a Tetragonal phase with 8.9 nm of average crystallite size and 14.2 nm for nanocomposite. FE-SEM images showed that the average particle size in the range of (12.5-57.5) nm and UV-VIS absorbance has energy gap of 3.8 eV, while the energy gap of Cr2O3-TNPs is 2.8 eV. It was found that the performance of photocatalysts of the nanocomposite for hydrogen generation was superior. It gave the highest rate of hydrogen production (3.6) ml at 80 min when exposed to ultraviolet light. Moreover, the nanocomposite revealed high H2 production rate under ultraviolt light irradiation (λ < 400 nm). The Cr2O3-TNps have high photocatalytic effectiveness due to their wide ultraviolt light photoresponse range and excellent separation of photogenerated electrons and holes. 

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Tue Dec 05 2023
Journal Name
Engineering, Technology &amp; Applied Science Research
Investigating the Ability of producing Sustainable Blocks using Recycled Waste

The primary objective of this study is to manage price market items in the construction of walls for affordable structures with load-bearing hollow masonry units using the ACI 211.1 blend design with a slump range of 25-50 mm that follows the specification limits of IQS 1077. It was difficult to reach a suitable cement weight to minimum content (economic and environmental goal), so many trail mixtures were cast. A portion (10-20%) of the coarse aggregates was replaced with concrete, tile, and clay-brick waste. Finally, two curing methods were used: immersion under water as normal curing, and water spraying as it is closer to the field conditions. The recommendation in IQS 1077 to increase the curing period from 14 to 28 days was tak

... Show More
Scopus (1)
Crossref (1)
Scopus Clarivate Crossref
View Publication
Publication Date
Sun Aug 13 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Producing CePowders By (LICVD)Process and Using TEA-Co2 Laser

In this research , Aprocess ( LICVD) was used for producing silicon nitride powders with chemical compositon Si3N4 ,by using TEA-Co2 Laser to induc reaction in the gas phase,  NH3 was used as on additive to SiH4. Reactant gases that were vibrationaly heated by absorbing energy emitted from TEA-Co2 Laser decomposes throug coillsion assisted multiple photon dissociation causing Si3N4 powders. By the dependence of the LICVD process  on  varios parameters such as Laser intensity , total gas pressure, partial pressures of SiH4 and NH3 were investigated. Dissociation rate as a function of Laser intensity and pressure was investigated. The powders obtained exhibit various colors from brown which  is rich in Si to white.This

... Show More
View Publication Preview PDF
Publication Date
Thu Dec 23 2021
Journal Name
Iraqi Journal Of Science
Synthesis of TiO2 Thin Films Nanoparticles with Different Layers using Simple Sol-Gel Method

   In this study, titanium dioxide (TiO2 (are synthesized by sol– gel simple method. Thin films of sol, gel, and sol- gel on relatively flat glass substrates are applied with Spin coating technique with multilayers. The optical and morphological properties (studied using AFM) of TiO2 layers show good properties, with particles diameters less than 4 nm for all prepared samples and have maximum length 62 nm for TiO2 gel thin films of three layers. The results show low roughness values for all films especially for 4 layers sol (8.37nm), which improve the application in dye sensitive solar cell (DSSc)         .  

Scopus (4)
Crossref (3)
Scopus Crossref
View Publication Preview PDF
Publication Date
Sat Jan 01 2022
Journal Name
3rd International Scientific Conference Of Alkafeel University (iscku 2021)
Analysis of X-ray diffraction lines profile of Tio2 nanoparticles to determine the energy per unit volume and stress by using Halder-Wagner method

In this study, the Halder-Wagner method was used for an analysisX-ray lines of Tio2 nanoparticles. Where the software was used to calculate the FWHM and integral breath (β) to calculate the area under the curve for each of the lines of diffraction. After that, the general equation of the halder- Wagner method is applied to calculate the volume (D), strain (ε), stress (σ), and energy per unit(u). Volume (β). Where the value of the crystal volume was equal to (0.16149870 nm) and the strain was equal to (1.044126), stress (181.678 N / m2), and energy per unit volume (94.8474 J m-3).The results obtained from these methods were then compared with those obtained from each of the new paradigm of the HalderWagner method, the Shearer developm

... Show More
Scopus Crossref
View Publication
Publication Date
Tue Jun 01 2021
Journal Name
Engineering, Technology & Applied Science Research
Producing Green Concrete with Plastic Waste and Nano Silica Sand

Abstract-Industrial and urban development has resulted in the spread of plastic waste and the increase in the emissions of carbon dioxide resulting from the cement manufacturing process. The current research aims to produce green (environmentally friendly) concrete by using plastic waste as coarse aggregates in different proportions (10% and 20%) and nano silica sand powder as an alternative to cement in different proportions (5% and 10% by weight). The results showed that compressive strength decreased by 12.10% and 19.23% for 10% and 20% plastic waste replacement and increased by 12.89% and 20.39% for 5% and 10% silica sand replacement respectively at 28 days. Flexural strength decreased by 12.95% and 19.64% for 10% and 20% plastic waste

... Show More
Publication Date
Sat Dec 11 2021
Journal Name
Engineering, Technology & Applied Science Research
Producing Green Concrete with Plastic Waste and Nano Silica Sand

Industrial and urban development has resulted in the spread of plastic waste and the increase in the emissions of carbon dioxide resulting from the cement manufacturing process. The current research aims to produce green (environmentally friendly) concrete by using plastic waste as coarse aggregates in different proportions (10% and 20%) and nano silica sand powder as an alternative to cement in different proportions (5% and 10% by weight). The results showed that compressive strength decreased by 12.10% and 19.23% for 10% and 20% plastic waste replacement and increased by 12.89% and 20.39% for 5% and 10% silica sand replacement respectively at 28 days. Flexural strength decreased by 12.95% and 19.64% for 10% and 20% plastic waste r

... Show More
Crossref (9)
Crossref
Publication Date
Mon Dec 18 2017
Journal Name
Al-khwarizmi Engineering Journal
Fabrication of Carbon Nanotube Reinforced Al2O3/Cr2O3 Nanocomposites by Coprecipitation Process

In this research, the effect of multi-walled carbon nanotubes (MWCNTs) on the alumina/chromia (Al2O3/Cr2O3) nanocomposites has been investigated. Al2O3/Cr2O3-MWCNTs nanocomposites with variable contents of Cr2O3 and MWCNTs were fabricated using coprecipitation process and followed by spark plasma sintering. XRD analysis revealed a good crystallinity of sintered nanocomposites samples and there was only one phase presence of Al2O3-Cr2O3 solid solution. Density, Vickers microhardness, fracture toughness and fracture strength have been measured in the sintered samples. The results show tha

... Show More
Crossref (1)
Crossref
View Publication Preview PDF
Publication Date
Tue Sep 29 2020
Journal Name
Iraqi Journal Of Science
An Automated Classification of Mammals and Reptiles Animal Classes Using Deep Learning

Detection and classification of animals is a major challenge that is facing the researchers. There are five classes of vertebrate animals, namely the Mammals, Amphibians, Reptiles, Birds, and Fish, and each type includes many thousands of different animals. In this paper, we propose a new model based on the training of deep convolutional neural networks (CNN) to detect and classify two classes of vertebrate animals (Mammals and Reptiles). Deep CNNs are the state of the art in image recognition and are known for their high learning capacity, accuracy, and robustness to typical object recognition challenges. The dataset of this system contains 6000 images, including 4800 images for training. The proposed algorithm was tested by using 1200

... Show More
Scopus (5)
Crossref (2)
Scopus Crossref
View Publication Preview PDF
Publication Date
Mon Jul 10 2023
Journal Name
Journal Of Engineering
3-D Map Producing for Groundwater Level using Kriging Interpolation Method

The effect of the initial pressure upon the laminar flame speed, for a methane-air mixtures, has been detected paractically, for a wide range of equivalence ratio. In this work, a measurement system is designed in order to measure the laminar flame speed using a constant volume method with a thermocouples technique. The laminar  burning velocity is measured, by using the density ratio method. The comparison of the present work results and the previous ones show good agreement between them. This indicates that the measurements and the calculations employed in the present work are successful and precise

Crossref
View Publication Preview PDF
Publication Date
Mon May 01 2023
Journal Name
Journal Of Engineering
Producing Sustainable Roller Compacted Concrete by Using Fine Recycled Concrete Aggregate

One-third of the total waste generated in the world is construction and demolition waste. Reducing the life cycle of building materials includes increasing their recycling and reuse by using recycled aggregates. By preventing, the need to open new aggregate quarries and reducing the amount of construction waste dumped into landfills, the use of recycled concrete aggregate in drum compacted concrete protects the environment. Four samples of PRCC were prepared for testing (compressive strength, tensile strength, flexural strength, density, water absorption, porosity) as the reference mix and (10, 15, and 20%) of fine recycled concrete aggregate as a partial replacement for fine natural aggregate by volume. The mix is designed according to

... Show More
Crossref (2)
Crossref
View Publication Preview PDF