In this research, the study effect of additive titanium dioxide powder (TiO2) as a lone composite ( Ep+TiO2) and a mixture of (TiO2) and silicon oxide (SiO2), ( Ep+ TiO2+SiO2)as a hybrid composite on the mechanical and physical properties for epoxy coating. Thescompsiteswere prepared by (Hand Lay- the molding) method. The samples were tested for compressive strength, surface hardness, modulus of elasticity, thermal conductivity and diffusion coefficient, from the results obtained showed improvement in mechanical properties after adding ceramic powders, as the alone composite (EP+ TiO2) had the highest compressive strength ( 53.738 ) ᴍPa, the hybrid composite ( EP+TiO2 +SiO2 ) had the highest surface hardness (79.65), modulus of elasticity (1166.66 ) ᴍPa, impact strength ( 8.48) ᴍPa, thermal conductivity (0.4961 )watt/ m.c◦. As for the diffusion coefficient in the acidic solution ( HCL), the epoxy without adding the highest diffusion coefficient ( 31.3x 10-10) m2/ sec while for immersion in ordinary water, the one composite material (Ep+ TiO2) had the highest value of the diffusion coefficient (7.56x10-10)m2/sec.
The use of blended cement in concrete provides economic, energy savings, and ecological benefits, and also provides. Improvement in the properties of materials incorporating blended cements. The major aim of this investigation is to develop blended cement technology using grinded local rocks . The research includes information on constituent materials, manufacturing processes and performance characteristics of blended cements made with replacement (10 and 20) % of grinded local rocks (limestone, quartzite and porcelinite) from cement. The main conclusion of this study was that all types of manufactured blended cement conformed to the specification according to ASTM C595-12 (chemical and physical requirements). The percentage of the compress
... Show MoreBackground: Polymers are very rarely used in their form. These modifications are carried out in order to improve the properties of polymers.Recently silver have been used successfully as antimicrobial (medical and dental) biomaterials that can prevent caries and infection of implants Purposes: The aim of the present in vitro study is to evaluate the effect of addition of silver nitrate to acrylic resin in different concentrationsthrough several tests part of these are: The effect of this additive on impact strength, transverse strength, and tensile strength of AgNO3 – loaded resin, and to assess any effect of addition of silver nitrate on coloration of acrylic resin. Materials and methods: Different concentrations of silver nitrate
... Show MoreThe use of blended cement in concrete provides economic, energy savings, and ecological benefits, and also provides. Improvement in the properties of materials incorporating blended cements. The major aim of this investigation is to develop blended cement technology using grinded local rocks . The research includes information on constituent materials, manufacturing processes and performance characteristics of blended cements made with replacement (10 and 20) % of grinded local rocks (limestone, quartzite and porcelinite) from cement. The main conclusion of this study was that all types of manufactured blended cement conformed to the specification according to ASTM C595-12 (chemical and physical requirements). The percentage of the compress
... Show MoreThe use of blended cement in concrete provides economic, energy savings, and ecological benefits, and also provides. Improvement in the properties of materials incorporating blended cements. The major aim of this investigation is to develop blended cement technology using grinded local rocks . The research includes information on constituent materials, manufacturing processes and performance characteristics of blended cements made with replacement (10 and 20) % of grinded local rocks (limestone, quartzite and porcelinite) from cement.
The main conclusion of this study was that all ty
... Show MoreThermal conductivity measurement was done for specimens of Polystyrene/ titanium dioxide, Polycarbonate/ titanium dioxide and Polymethylmetha acrylate/ titanium dioxide composites for weight ratio of 1.9/ 0.1 and 1.8/ 0.2 wt% for different thickness of the samples. The experimental results show that the thermal conductivity is increased with the increasing of thickness of layers and with the weight ratio of TiO2
This paper is concerned with a Coupled Reaction-diffusion system defined in a ball with homogeneous Dirichlet boundary conditions. Firstly, we studied the blow-up set showing that, under some conditions, the blow-up in this problem occurs only at a single point. Secondly, under some restricted assumptions on the reaction terms, we established the upper (lower) blow-up rate estimates. Finally, we considered the Ignition system in general dimensional space as an application to our results.
This work describes the weathering effects (UV-Irradiation, and Rain) on the thermal conductivity of PS, PMMA, PS/PMMA blend for packaging application. The samples were prepared by cast method at different ratios (10, 30, 50, 70, and 90 %wt). It was seen that the thermal conductivity of PMMA (0.145 W/m.K), and for PS(0.095 W/m.K), which increases by PS ratio increase up to 50% PS/PMMA blend then decreased that was attributed to increase in miscibility of the blend involved. By UV-weathering, it was seen that thermal conductivity for PMMA increased with UV-weathering up to (30hr) then decreased, that was attributed to rigidity and defect formation, respectively. For 30%PS/PMMA, there results showed unsystematic decrease in thermal conduct
... Show Morein this paper copper oxide (cuO thin films were prepared by the method of vacum thermal evaporation a pressure.
Objectives: Maxillofacial silicone is used to restore abnormalities due to congenital or acquired causes. However, the quality of silicone is far from ideal. This study was aimed at assessing the influence of the addition of cellulose nanofibers (CNFs; several nanometers wide and 2-5 micro m long) on the physical and mechanical characteristics of maxillofacial silicone elastomers. Methods: Two CNF weight percentages (0.5% and 1%) were tested, and 180 specimens were divided into one control and two experimental groups. Each group was subdivided into six subgroups. In each subgroup, ten specimens subjected to each of the following tests: tearing strength, Shore-A hardness, tensile strength, elongation percentage, surface roughness, and color
... Show MoreThe aim of this paper, study the effect of carbon nanotubes on the electrical properties of polyvinylchloride. Samples of polyvinylchloride carbon nanotubes composite prepared by using hot press technique. The weight percentages of carbon nanotubes are 0,5,10 and 20wt.%. Results showed that the D.C electrical conductivity increases with increasing of the weight percentages of carbon nanotubes. Also, the D.C electrical conductivity changed with increase temperature for different concentrations of carbon nanotubes. The activation energy of D.C electrical conductivity is decreased with increasing of carbon nanotubes concentration.