This work is concerned with studying the optimal classical continuous control quaternary vector problem. It is consisted of; the quaternary nonlinear hyperbolic boundary value problem and the cost functional. At first, the weak form of the quaternary nonlinear hyperbolic boundary value problem is obtained. Then under suitable hypotheses, the existence theorem of a unique state quaternary vector solution for the weak form where the classical continuous control quaternary vector is considered known is stated and demonstrated by employing the method of Galerkin and the compactness theorem. In addition, the continuity operator between the state quaternary vector solution of the weak form and the corresponding classical continuous control quaternary vector is demonstrated in three different infinite dimensional spaces (Hilbert spaces). Furthermore, with suitable hypotheses, the existence theorem of an optimal classical continuous control quaternary vector dominated by the weak form of the quaternary nonlinear hyperbolic boundary value problem is stated and demonstrated.
In this investigation, Rayleigh–Ritz method is used to calculate the natural frequencies of rectangular isotropic and laminated symmetric and anti-symmetric cross and angle ply composite plate with general elastic supports along its edges. Each of the admissible functions here is composed of a trigonometric function and an arbitrary continuous function that is introduced to ensure the sufficient smoothness of the so-called residual displacement function at the edges. Perhaps more importantly, this study has developed a general approach for deriving a complete set of admissible functions that can be applied to various boundary conditions. Several numerical examples are studied to demonstrate the accuracy and convergence of the current s
... Show MoreIn this study, the modified Rayleigh-Ritz method and Fourier series are used to determine the thermal buckling behavior of laminated composite thin plates with a general elastic boundary condition applied to in-plane uniform temperature distribution depending upon classical laminated plate theory(CLPT). A generalized procedure solution is developed for the Rayleigh-Ritz method combined with the synthetic spring technique. The transverse displacement of the orthotropic rectangular plates is not a different term as a new shape expansion of trigonometric series. In this solution approach, the plate transverse deflection and rotation due to bending are developed into principle Fourier series with a sufficient smoothness auxi
... Show MoreAbstract
This Research aims for harnessing critical and innovative thinking approaches besides innovative problem solving tools in pursuing continual quality improvement initiatives for the benefit of achieving operations results effectively in water treatment plants in Baghdad Water Authority. Case study has been used in fulfilling this research in the sadr city water treatment plant, which was chosen as a study sample as it facilitates describing and analyzing its current operational situation, collecting and analyzing its own data, in order to get its own desired improvement opportunity be done. Many statistical means and visual thinking promoting methods has been used to fulfill research task.
... Show MoreThe research problem is that most of the construction projects exceed the planned value, due to the failure to implement the plans on time. The current study aims to monitor the implementation of the project and for each of the executed tasks of the table of quantities in order to detect deviations at the time they occur, evaluate the time and cost performance, and then identify the areas of waste and analyze the implementation of each task in order to diagnose the underlying problems and find possible and applicable solutions in the environment Iraqi. The research was applied in one of the companies specialized in the field of construction projects, and one of the most important conclusions reached is the possibility of applying
... Show MoreThe accuracy of the Moment Method for imposing no-slip boundary conditions in the lattice Boltzmann algorithm is investigated numerically using lid-driven cavity flow. Boundary conditions are imposed directly upon the hydrodynamic moments of the lattice Boltzmann equations, rather than the distribution functions, to ensure the constraints are satisfied precisely at grid points. Both single and multiple relaxation time models are applied. The results are in excellent agreement with data obtained from state-of-the-art numerical methods and are shown to converge with second order accuracy in grid spacing.
المستخلص:
في هذا البحث , استعملنا طرائق مختلفة لتقدير معلمة القياس للتوزيع الاسي كمقدر الإمكان الأعظم ومقدر العزوم ومقدر بيز في ستة أنواع مختلفة عندما يكون التوزيع الأولي لمعلمة القياس : توزيع لافي (Levy) وتوزيع كامبل من النوع الثاني وتوزيع معكوس مربع كاي وتوزيع معكوس كاما وتوزيع غير الملائم (Improper) وتوزيع
... Show More