Optimization procedures using a variety of input parameters have gotten a lot of attention, but using three non-edible seed oils of Jatropha (Jatropha curcas), Sesame (Sesamum indicum), and Sweet Almond (Prunusamygdalus dulcis) has a few advantages, including availability and non-food competitiveness. Optimizing a two-stage trans-esterification process using a sodium hydroxide-based catalyst at a fixed catalyst (1.0wt %) and temperature (60 oC) while varying molar ratio (1:3, 1:6, 1:12), time (20–60 min), and mixing speed (500–1000 rpm), to produce optimal responses of yields were studied using response surface methodology (RSM). The optimization solution of molar ratio (1:3), time (40.9 min.), and speed (500 rpm) resulted in an 86.9 % for refined jatropha biodiesel (RJB), the optimization for refined sesame biodiesel (RJB) with molar ratio (1:6), time (41.7 min.), and speed (619 rpm) resulted in an 88.5 %, and the optimization for refined sweet almond biodiesel (RSAB) with the molar ratio (1:3), time (49.359 min.), and speed (500 rpm) resulted in an 88.7 % at the conditions. RJO, RJB, and RSAB had predicted biodiesel yields of 86.9 %, 88.5 %, and 88.7 %, with less than 0.2 % variation, respectively. The characteristics of biodiesel were studied, and the results were determined to meet both ASTM D6751 and EN14214 criteria. The effects of molar ratio, and time on biodiesel yield from their respective oils were important parameters that greatly influenced the yields, but speed only changed the yields marginally. This work has addressed important difficulties influencing mass production of biodiesel such as the utilization of low-cost feedstock such as non-edible vegetable oils, boosting production efficiency through variable optimization of process parameters, and lowering catalyst dosages through catalyst regeneration.
Wheat straw was modified with malonic acid in order to get low cost adsorbent have a good ability to remove copper and ferric ions from aqueous solutions, chemical modification temperature was 120°C and the time was 12 h. Parameters that affect the adsorption experiments were studied and found the optimum pH were 6 and 5 for copper and iron respectively and the time interval was 120 min and the adsorbent mass was 0.1 g. The values for adsorption isotherms parameters were determined according to Langmuir [qmax were 54.64 and 61.7 mg/g while b values were 0.234 and 0.22 mg/l] , Freundlich [Kf were 16.07 and 18.89 mg/g and n were 2.77 and 3.16], Temkin [B were 0.063 and 0.074 j/mol and At were 0.143 and 1.658 l/g] and for Dubinin-Radushkev
... Show MoreThe subject of marketing culture and mental image is one of the important topics in the field of management. There is no study that combines these two variables. The research is important because of the increasing importance of the subject. The future direction of the company in question will support the company's economic and marketing responsibilities. And reflect the company's mental image, as a culture that contributes to changing the reality of the organization investigated by polling the views of a sample of managers in the General Company for Vegetable Oil Industry, which (30) out of the (65) individual, and There are two hypotheses of research: There is a significant
... Show MoreAn Optimal Algorithm for HTML Page Building Process
Several attempts have been made to modify the quasi-Newton condition in order to obtain rapid convergence with complete properties (symmetric and positive definite) of the inverse of Hessian matrix (second derivative of the objective function). There are many unconstrained optimization methods that do not generate positive definiteness of the inverse of Hessian matrix. One of those methods is the symmetric rank 1( H-version) update (SR1 update), where this update satisfies the quasi-Newton condition and the symmetric property of inverse of Hessian matrix, but does not preserve the positive definite property of the inverse of Hessian matrix where the initial inverse of Hessian matrix is positive definiteness. The positive definite prope
... Show More