A hyperboloid solar concentrator (HSC) was designed with a truncation angle side to the entrance aperture by simulation in the Zemax Optical Design software. The (HSC) has a wide exposure range to solar radiation due to the relatively large entrance aperture. The design consists of an entrance aperture facing the sun to obtain the largest possible amount of solar radiation, and a small exit aperture compared to the entrance aperture whose mission is to receive solar radiation after it enters the entrance aperture and reflects it from the inner reflective walls of the (HSC). In the exit aperture, there is a detector to measure the number of rays incident on it, which is a measure of the optical efficiency of the sample. A hybrid sample has been designed with an angular truncation at the front of it. This feature contributes to a greater absorption of solar radiation for greater efficiency. The results showed a slight change in the value of optical efficiency when changing the truncation angle, and the values of optical efficiency were superior to designs that had a small concentration ratio, and optical efficiency increased with increasing the concentrator length.
We investigated at the optical properties, structural makeup, and morphology of thin films of cadmium telluride (CdTe) with a thickness of 150 nm produced by thermal evaporation over glass. The X-ray diffraction study showed that the films had a crystalline composition, a cubic structure, and a preference for grain formation along the (111) crystallographic direction. The outcomes of the inquiry were used to determine these traits. With the use of thin films of CdTe that were doped with Ag at a concentration of 0.5%, the crystallization orientations of pure CdTe (23.58, 39.02, and 46.22) and CdTe:Ag were both determined by X-ray diffraction. orientations (23.72, 39.21, 46.40) For samples that were pure and those that were doped with
... Show MoreIn this work, the effect of the addition of bright nickel plating and silver carried out by the electroplating method has been studied, on the coating of copper nanoparticles on the copper base metal via the process of thermal evaporation. The improvement of the solar absorber using CuNP in combination with the bright nickel and silver was obtained to be better than copper nanoparticles individually. A bright nickel enhanced the absorbed thermal stability. Also, other optical properties, absorptions, and emissivity slightly decreased from (93% to 87%), while the existence of silver had a slight impact on absorption of about (86.50%). On the other hand, thermal conductivity was evaluated using hot disk analyzer. The results showed a good
... Show MoreThe ferric oxide nanoparticles (Fe2O3) which are deposited at interface which is related to hole collecting buffer layer [poly(3,4-ethyl-enedioxythiophene): poly(styrene-sulfonate) (PEDOT: PSS)] as well as regioregular poly(3-hexyl-thiophene): Zinc oxide nanoparticles (P3HT): (ZnO) active layer have been considerable increasing the performance of solar cell. Also, the solar cell devices have been fabricated with a weight ratio of 1:0.7, 1:0.8, 1:0.9 and 1:1 of P3HT and ZnO, respectively. In addition, photo physical characteristics regarding such devices with different value of the weight ratio were examined. This work is indicating that the absorption spectrum related to blend will be broad
... Show MoreAs part of our research on efficiency improvement of PERC (Passivated Emitter Rear Solar Cell), achieving very low reflectivity values of solar cell surface is a must. One of the most advance technologies to do so is the use of advanced texturing for the front surface of the cells. This texture, also known as Black Silicon, consists of peaks and valleys of nano metric dimensions and capable of dramatically reducing the reflectance of the front surface. A reflectance around 5% was reached ,using simulation, when using a Black-Silicon texturing with height of 50nm with peak rounding of 5nm. Even though this texturing may affect other parameters such as series resistance or surface recombination, as a starting point
... Show MoreEnhancement of the performance for hybrid solar air conditioning system was presented in this paper. The refrigerant temperature leaving the condenser was controlled using three-way valve, this valve was installed after the compressor to regulate refrigerant flow rate towards the solar system. A control system using data logger, sensors and computer was proposed to set the opening valve ratio. The function of control program using LabVIEW software is to obtain a minimum refrigerant temperature from the condenser outlet to enhance the overall COP of the unit by increasing the degree of subcooled refrigerant. A variable load electrical heater with coiled pipe was used instead of the solar collector and the storage tank to simulate the sola
... Show MoreThree different distribution modules of silicon solar cells in a panel are used in this study . Each module consists of five identical circular silicon solar cells of radius (5cm) and then the total panel areas are identical. The five solar cells are arranged in the panel in different shapes: circular, triangular and rectangular .The efficiency for these three panel distribution are measured indoor and outdoor. The results show that the efficiency is a function of the cells distribution.
The current research included obtaining the best performance specifications for a silicon device with a mono-crystalline type pn junction (pn–Si). A simulation of the device was performed by the use of a computer program in one dimension SCAPS-1D in order to reach the optimum thickness for both p and n layers and to obtain the best efficiency in performance of the pn-Si junction. The optimum device efficiency was eta (η) = 12.4236 % when the ideal thickness for the p and n layers was 5µm and 1.175µm, respectively (p=5 µm and n=1.75µm).
The research included studying the effects of different spectra of solar illumination using simulation of the device; the usual solar spectrum AM1_5 G1 sun. Spectrum
... Show MoreA newly developed analytical method characterized by its speed and sensitivity for the determination of mefenamic acid (MFA) in pure and pharmaceutical preparation is established via turbidimetric measurement (0-180o) by Ayah 6SX1-ST-2D Solar cell CFI Analyser . The method was based on the reaction of
phosphomolybdic acid with mefenamic acid in aqueous medium to form blue color precipitate as an ion-pair complex . Turbidity was measured via the reflection of incident light that collides on the surface precipitated particles at 0-180o . The chemical and physical parameters were studied and optimized. The calibration graph was linear in the range of 0.3-7 or 0.3-10 mMol.L-1, with correlation coefficient r = 0.9907 or 0.9556 respectively