Preferred Language
Articles
/
jih-2776
Iterative Method for Solving a Nonlinear Fourth Order Integro-Differential Equation

This study presents the execution of an iterative technique suggested by Temimi and Ansari (TA) method to approximate solutions to a boundary value problem of a 4th-order nonlinear integro-differential equation (4th-ONIDE) of the type Kirchhoff which appears in the study of transverse vibration of hinged shafts. This problem is difficult to solve because there is a non-linear term under the integral sign, however, a number of authors have suggested iterative methods for solving this type of equation. The solution is obtained as a series that merges with the exact solution. Two examples are solved by TA method, the results showed that the proposed technique was effective, accurate, and reliable. Also, for greater reliability, the approximate solutions were compared with the classic Runge-Kutta method (RK4M) where good agreements were observed. For more accuracy the maximum error remainder was found, and the absolute error was computed between the semi-analytical method and the numerical method RK4M.  Mathematica® 11 was used as a program for calculations.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Fri Mar 01 2024
Journal Name
Baghdad Science Journal
Using the Elzaki decomposition method to solve nonlinear fractional differential equations with the Caputo-Fabrizio fractional operator

The techniques of fractional calculus are applied successfully in many branches of science and engineering, one of the techniques is the Elzaki Adomian decomposition method (EADM), which researchers did not study with the fractional derivative of Caputo Fabrizio. This work aims to study the Elzaki Adomian decomposition method (EADM) to solve fractional differential equations with the Caputo-Fabrizio derivative. We presented the algorithm of this method with the CF operator and discussed its convergence by using the method of the Cauchy series then, the method has applied to solve Burger, heat-like, and, couped Burger equations with the Caputo -Fabrizio operator. To conclude the method was convergent and effective for solving this type of

... Show More
Scopus Crossref
View Publication Preview PDF
Publication Date
Mon Jun 19 2017
Journal Name
Arabian Journal For Science And Engineering
Scopus (27)
Crossref (24)
Scopus Clarivate Crossref
View Publication
Publication Date
Sun Mar 06 2011
Journal Name
Baghdad Science Journal
The Approximated Solution for The Nonlinear Second Order Delay Multi-Value Problems

This paper is attempt to study the nonlinear second order delay multi-value problems. We want to say that the properties of such kind of problems are the same as the properties of those with out delay just more technically involved. Our results discuss several known properties, introduce some notations and definitions. We also give an approximate solution to the coined problems using the Galerkin's method.

Crossref
View Publication Preview PDF
Publication Date
Sun Oct 01 2017
Journal Name
Journal Of The Association Of Arab Universities For Basic And Applied Sciences
Crossref (6)
Crossref
View Publication
Publication Date
Fri Apr 21 2023
Journal Name
Aip Conference Proceedings
Efficient computational methods for solving the nonlinear initial and boundary value problems

In this paper, three approximate methods namely the Bernoulli, the Bernstein, and the shifted Legendre polynomials operational matrices are presented to solve two important nonlinear ordinary differential equations that appeared in engineering and applied science. The Riccati and the Darcy-Brinkman-Forchheimer moment equations are solved and the approximate solutions are obtained. The methods are summarized by converting the nonlinear differential equations into a nonlinear system of algebraic equations that is solved using Mathematica®12. The efficiency of these methods was investigated by calculating the root mean square error (RMS) and the maximum error remainder (𝑀𝐸𝑅n) and it was found that the accuracy increases with increasi

... Show More
Scopus Crossref
View Publication Preview PDF
Publication Date
Sat May 01 2021
Journal Name
Journal Of Physics: Conference Series
Three Weighted Residuals Methods for Solving the Nonlinear Thin Film Flow Problem
Abstract<p>In this paper, the methods of weighted residuals: Collocation Method (CM), Least Squares Method (LSM) and Galerkin Method (GM) are used to solve the thin film flow (TFF) equation. The weighted residual methods were implemented to get an approximate solution to the TFF equation. The accuracy of the obtained results is checked by calculating the maximum error remainder functions (MER). Moreover, the outcomes were examined in comparison with the 4<sup>th</sup>-order Runge-Kutta method (RK4) and good agreements have been achieved. All the evaluations have been successfully implemented by using the computer system Mathematica®10.</p>
Crossref (1)
Crossref
View Publication
Publication Date
Wed Nov 21 2018
Journal Name
International Journal Of Control, Automation And Systems
Scopus (18)
Crossref (16)
Scopus Clarivate Crossref
View Publication
Publication Date
Tue Jun 01 2021
Journal Name
International Journal Of Nonlinear Analysis And Applications
Scopus (2)
Scopus
View Publication Preview PDF
Publication Date
Sun Sep 01 2019
Journal Name
Gazi University Journal Of Science
Reliable Iterative Methods for Solving Convective Straight and Radial Fins with Temperature-Dependent Thermal Conductivity Problems

In our article, three iterative methods are performed to solve the nonlinear differential equations that represent the straight and radial fins affected by thermal conductivity. The iterative methods are the Daftardar-Jafari method namely (DJM), Temimi-Ansari method namely (TAM) and Banach contraction method namely (BCM) to get the approximate solutions. For comparison purposes, the numerical solutions were further achieved by using the fourth Runge-Kutta (RK4) method, Euler method and previous analytical methods that available in the literature. Moreover, the convergence of the proposed methods was discussed and proved. In addition, the maximum error remainder values are also evaluated which indicates that the propo

... Show More
Crossref (5)
Crossref
View Publication
Publication Date
Fri Jan 26 2024
Journal Name
Iraqi Journal Of Science
Proving The Existence and the Uniqueness Solutions of fractional Integro- Differential Equations

In this paper, we will study and prove the existence and the uniqueness theorems
of solutions of the generalized linear integro-differential equations with unequal
fractional order of differentiation and integration by using Schauder fixed point
theorem. This type of fractional integro-differential equation may be considered as a
generalization to the other types of fractional integro-differential equations
Considered by other researchers, as well as, to the usual integro-differential
equations.

View Publication Preview PDF