Preferred Language
Articles
/
jih-2776
Iterative Method for Solving a Nonlinear Fourth Order Integro-Differential Equation

This study presents the execution of an iterative technique suggested by Temimi and Ansari (TA) method to approximate solutions to a boundary value problem of a 4th-order nonlinear integro-differential equation (4th-ONIDE) of the type Kirchhoff which appears in the study of transverse vibration of hinged shafts. This problem is difficult to solve because there is a non-linear term under the integral sign, however, a number of authors have suggested iterative methods for solving this type of equation. The solution is obtained as a series that merges with the exact solution. Two examples are solved by TA method, the results showed that the proposed technique was effective, accurate, and reliable. Also, for greater reliability, the approximate solutions were compared with the classic Runge-Kutta method (RK4M) where good agreements were observed. For more accuracy the maximum error remainder was found, and the absolute error was computed between the semi-analytical method and the numerical method RK4M.  Mathematica® 11 was used as a program for calculations.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Mon Sep 25 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Approximate Solution for Fuzzy Differential Algebraic Equations of Fractional Order Using Adomian Decomposition Method

      In this paper we shall prepare an  sacrificial solution for fuzzy differential algebraic equations of fractional order (FFDAEs) based on the Adomian decomposition method (ADM) which is proposed to solve (FFDAEs) . The blurriness will appear in the boundary conditions, to be fuzzy numbers. The solution of the proposed pattern of  equations is studied in the form of a convergent series with readily computable components. Several examples are resolved as  clarifications, the numerical outcomes are obvious that the followed approach is simple to perform and precise when utilized to (FFDAEs).

 

View Publication Preview PDF
Publication Date
Sun Sep 24 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Approximate Solution for Fuzzy Differential Algebraic Equations of Fractional Order Using Adomian Decomposition Method

      In this paper we shall prepare an  sacrificial solution for fuzzy differential algebraic equations of fractional order (FFDAEs) based on the Adomian decomposition method (ADM) which is proposed to solve (FFDAEs) . The blurriness will appear in the boundary conditions, to be fuzzy numbers. The solution of the proposed pattern of  equations is studied in the form of a convergent series with readily computable components. Several examples are resolved as  clarifications, the numerical outcomes are obvious that the followed approach is simple to perform and precise when utilized to (FFDAEs).

View Publication Preview PDF
Publication Date
Mon Jan 20 2020
Journal Name
Kuwait Journal Of Science
Three iterative methods for solving Jeffery-Hamel flow problem

In this article, the nonlinear problem of Jeffery-Hamel flow has been solved analytically and numerically by using reliable iterative and numerical methods. The approximate solutions obtained by using the Daftardar-Jafari method namely (DJM), Temimi-Ansari method namely (TAM) and Banach contraction method namely (BCM). The obtained solutions are discussed numerically, in comparison with other numerical solutions obtained from the fourth order Runge-Kutta (RK4), Euler and previous analytic methods available in literature. In addition, the convergence of the proposed methods is given based on the Banach fixed point theorem. The results reveal that the presented methods are reliable, effective and applicable to solve other nonlinear problems.

... Show More
View Publication Preview PDF
Publication Date
Sat Feb 27 2021
Journal Name
Iraqi Journal Of Science
Efficient Iterative Methods for Solving the SIR Epidemic Model

In this article, the numerical and approximate solutions for the nonlinear differential equation systems, represented by the epidemic SIR model, are determined. The effective iterative methods, namely the Daftardar-Jafari method (DJM), Temimi-Ansari method (TAM), and the Banach contraction method (BCM), are used to obtain the approximate solutions. The results showed many advantages over other iterative methods, such as Adomian decomposition method (ADM) and the variation iteration method (VIM) which were applied to the non-linear terms of the Adomian polynomial and the Lagrange multiplier, respectively. Furthermore, numerical solutions were obtained by using the fourth-orde Runge-Kutta (RK4), where the maximum remaining errors showed th

... Show More
Scopus (9)
Crossref (3)
Scopus Crossref
View Publication Preview PDF
Publication Date
Sun Oct 01 2023
Journal Name
Baghdad Science Journal
Nonlinear Ritz Approximation for the Camassa-Holm Equation by Using the Modify Lyapunov-Schmidt method

 

          In this work, the modified Lyapunov-Schmidt reduction is used to find a nonlinear Ritz approximation of Fredholm functional defined by the nonhomogeneous Camassa-Holm equation and Benjamin-Bona-Mahony. We introduced the modified Lyapunov-Schmidt reduction for nonhomogeneous problems when the dimension of the null space is equal to two.  The nonlinear Ritz approximation for the nonhomogeneous Camassa-Holm equation has been found as a function of codimension twenty-four.

Scopus Crossref
View Publication Preview PDF
Publication Date
Sat Nov 28 2020
Journal Name
Iraqi Journal Of Science
An Efficient Method for Solving Coupled Time Fractional Nonlinear Evolution Equations with Conformable Fractional Derivatives

In this article, an efficient reliable method, which is the residual power series method (RPSM), is used in order to investigate the approximate solutions of conformable time fractional nonlinear evolution equations with conformable derivatives under initial conditions. In particular, two types of equations are considered, which are time coupled diffusion-reaction equations (CD-REs) and MKdv equations coupled with conformable fractional time derivative of order α. The attitude of RPSM and the influence of different values of α are shown graphically.

Scopus (2)
Crossref (1)
Scopus Crossref
View Publication Preview PDF
Publication Date
Wed Mar 10 2021
Journal Name
Baghdad Science Journal
Heun Method Using to Solve System of NonLinear Functional Differential Equations

In this paper Heun method has been used to find numerical solution for first order nonlinear functional differential equation. Moreover, this method has been modified in order to treat system of nonlinear functional differential equations .two numerical examples are given for conciliated the results of this method.

Crossref
View Publication Preview PDF
Publication Date
Sun Mar 04 2018
Journal Name
Iraqi Journal Of Science
Improved High order Euler Method for Numerical Solution of Initial value Time- Lag Differential Equations

The goal of this paper is to expose a new numerical method for solving initial value time-lag of delay differential equations by employing a high order improving formula of Euler method known as third order Euler method. Stability condition is discussed in detail for the proposed technique. Finally some examples are illustrated to verify the validity, efficiency and accuracy of the method.

View Publication Preview PDF
Publication Date
Tue Jun 20 2023
Journal Name
Baghdad Science Journal
Numerical Solutions for the Nonlinear PDEs of Fractional Order by Using a New Double Integral Transform with Variational Iteration Method

This paper considers a new Double Integral transform called Double Sumudu-Elzaki transform DSET. The combining of the DSET with a semi-analytical method, namely the variational iteration method DSETVIM, to arrive numerical solution of nonlinear PDEs of Fractional Order derivatives. The proposed dual method property decreases the number of calculations required, so combining these two methods leads to calculating the solution's speed. The suggested technique is tested on four problems. The results demonstrated that solving these types of equations using the DSETVIM was more advantageous and efficient

Scopus (1)
Scopus Crossref
View Publication Preview PDF
Publication Date
Thu Jan 20 2022
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
The Implementations Special Third-Order Ordinary Differential Equations (ODE) for 5th-order 3rd-stage Diagonally Implicit Type Runge-Kutta Method (DITRKM)

The derivation of 5th order diagonal implicit type Runge Kutta methods (DITRKM5) for solving 3rd special order ordinary differential equations (ODEs) is introduced in the present study. The DITRKM5 techniques are the name of the approach. This approach has three equivalent non-zero diagonal elements. To investigate the current study, a variety of tests for five various initial value problems (IVPs) with different step sizes h were implemented. Then, a comparison was made with the methods indicated in the other literature of the implicit RK techniques. The numerical techniques are elucidated as the qualification regarding the efficiency and number of function evaluations compared with another literature of the implic

... Show More
Crossref
View Publication Preview PDF