In this paper, Bayes estimators for the shape and scale parameters of Weibull distribution have been obtained using the generalized weighted loss function, based on Exponential priors. Lindley’s approximation has been used effectively in Bayesian estimation. Based on theMonte Carlo simulation method, those estimators are compared depending on the mean squared errors (MSE’s).
This paper is concerned with Double Stage Shrinkage Bayesian (DSSB) Estimator for lowering the mean squared error of classical estimator ˆ q for the scale parameter (q) of an exponential distribution in a region (R) around available prior knowledge (q0) about the actual value (q) as initial estimate as well as to reduce the cost of experimentations. In situation where the experimentations are time consuming or very costly, a Double Stage procedure can be used to reduce the expected sample size needed to obtain the estimator. This estimator is shown to have smaller mean squared error for certain choice of the shrinkage weight factor y( ) and for acceptance region R. Expression for
... Show MoreThis paper deals with the mathematical method for extracting the Exponential Rayleighh distribution based on mixed between the cumulative distribution function of Exponential distribution and the cumulative distribution function of Rayleigh distribution using an application (maximum), as well as derived different statistical properties for distribution, and present a structure of a new distribution based on a modified weighted version of Azzalini’s (1985) named Modified Weighted Exponential Rayleigh distribution such that this new distribution is generalization of the distribution and provide some special models of the distribution, as well as derived different statistical properties for distribution
This paper includes the estimation of the scale parameter of weighted Rayleigh distribution using well-known methods of estimation (classical and Bayesian). The proposed estimators were compared using Monte Carlo simulation based on mean squared error (MSE) criteria. Then, all the results of simulation and comparisons were demonstrated in tables.
In this paper, simulation studies and applications of the New Weibull-Inverse Lomax (NWIL) distribution were presented. In the simulation studies, different sample sizes ranging from 30, 50, 100, 200, 300, to 500 were considered. Also, 1,000 replications were considered for the experiment. NWIL is a fat tail distribution. Higher moments are not easily derived except with some approximations. However, the estimates have higher precisions with low variances. Finally, the usefulness of the NWIL distribution was illustrated by fitting two data sets
Survival analysis is one of the types of data analysis that describes the time period until the occurrence of an event of interest such as death or other events of importance in determining what will happen to the phenomenon studied. There may be more than one endpoint for the event, in which case it is called Competing risks. The purpose of this research is to apply the dynamic approach in the analysis of discrete survival time in order to estimate the effect of covariates over time, as well as modeling the nonlinear relationship between the covariates and the discrete hazard function through the use of the multinomial logistic model and the multivariate Cox model. For the purpose of conducting the estimation process for both the discrete
... Show MoreIn this research, the focus was placed on estimating the parameters of the Hypoexponential distribution function using the maximum likelihood method and genetic algorithm. More than one standard, including MSE, has been adopted for comparison by Using the simulation method
This paper demonstrates the construction of a modern generalized Exponential Rayleigh distribution by merging two distributions with a single parameter. The "New generalized Exponential-Rayleigh distribution" specifies joining the Reliability function of exponential pdf with the Reliability function of Rayleigh pdf, and then adding a shape parameter for this distribution. Finally, the mathematical and statistical characteristics of such a distribution are accomplished
The acceptance sampling plans for generalized exponential distribution, when life time experiment is truncated at a pre-determined time are provided in this article. The two parameters (α, λ), (Scale parameters and Shape parameters) are estimated by LSE, WLSE and the Best Estimator’s for various samples sizes are used to find the ratio of true mean time to a pre-determined, and are used to find the smallest possible sample size required to ensure the producer’s risks, with a pre-fixed probability (1 - P*). The result of estimations and of sampling plans is provided in tables.
Key words: Generalized Exponential Distribution, Acceptance Sampling Plan, and Consumer’s and Producer Risks
... Show MoreIn this paper, we prove some coincidence and common fixed point theorems for a pair of discontinuous weakly compatible self mappings satisfying generalized contractive condition in the setting of Cone-b- metric space under assumption that the Cone which is used is nonnormal. Our results are generalizations of some recent results.