In this paper, we used the maximum likelihood estimation method to find the estimation values ​​for survival and hazard rate functions of the Exponential Rayleigh distribution based on a sample of the real data for lung cancer and stomach cancer obtained from the Iraqi Ministry of Health and Environment, Department of Medical City, Tumor Teaching Hospital, depending on patients' diagnosis records and number of days the patient remains in the hospital until his death.
Survival analysis is widely applied to data that described by the length of time until the occurrence of an event under interest such as death or other important events. The purpose of this paper is to use the dynamic methodology which provides a flexible method, especially in the analysis of discrete survival time, to estimate the effect of covariate variables through time in the survival analysis on dialysis patients with kidney failure until death occurs. Where the estimations process is completely based on the Bayes approach by using two estimation methods: the maximum A Posterior (MAP) involved with Iteratively Weighted Kalman Filter Smoothing (IWKFS) and in combination with the Expectation Maximization (EM) algorithm. While the other
... Show MoreIn this paper, Bayes estimators of Poisson distribution have been derived by using two loss functions: the squared error loss function and the proposed exponential loss function in this study, based on different priors classified as the two different informative prior distributions represented by erlang and inverse levy prior distributions and non-informative prior for the shape parameter of Poisson distribution. The maximum likelihood estimator (MLE) of the Poisson distribution has also been derived. A simulation study has been fulfilled to compare the accuracy of the Bayes estimates with the corresponding maximum likelihood estimate (MLE) of the Poisson distribution based on the root mean squared error (RMSE) for different cases of the
... Show MoreAbstract
In this research we been estimated the survival function for data suffer from the disturbances and confusion of Iraq Household Socio-Economic Survey: IHSES II 2012 , to data from a five-year age groups follow the distribution of the Generalized Gamma: GG. It had been used two methods for the purposes of estimating and fitting which is the way the Principle of Maximizing Entropy: POME, and method of booting to nonparametric smoothing function for Kernel, to overcome the mathematical problems plaguing integrals contained in this distribution in particular of the integration of the incomplete gamma function, along with the use of traditional way in which is the Maximum Likelihood: ML. Where the comparison on t
... Show MoreThe aim of this research is to explore the time and space distribution of traffic volume demand and investigate its vehicle compositions. The four selected links presented the activity of transportation facilities and different congestion points according to directions. The study area belongs to Al-Rusafa sector in Baghdad city that exhibited higher rate of traffic congestions of working days at peak morning and evening periods due to the different mixed land uses. The obtained results showed that Link (1) from Medical city intersection to Sarafiya intersection, demonstrated the highest traffic volume in both peak time periods morning AM and afternoon PM where the demand exceeds the capacity along the link corridor. Also, higher values f
... Show MoreThis paper concerns with deriving and estimating the reliability of the multicomponent system in stress-strength model R(s,k), when the stress and strength are identical independent distribution (iid), follows two parameters Exponentiated Pareto Distribution(EPD) with the unknown shape and known scale parameters. Shrinkage estimation method including Maximum likelihood estimator (MLE), has been considered. Comparisons among the proposed estimators were made depending on simulation based on mean squared error (MSE) criteria.
The present paper concerns with the problem of estimating the reliability system in the stress – strength model under the consideration non identical and independent of stress and strength and follows Lomax Distribution. Various shrinkage estimation methods were employed in this context depend on Maximum likelihood, Moment Method and shrinkage weight factors based on Monte Carlo Simulation. Comparisons among the suggested estimation methods have been made using the mean absolute percentage error criteria depend on MATLAB program.
In this paper, we derived an estimator of reliability function for Laplace distribution with two parameters using Bayes method with square error loss function, Jeffery’s formula and conditional probability random variable of observation. The main objective of this study is to find the efficiency of the derived Bayesian estimator compared to the maximum likelihood of this function and moment method using simulation technique by Monte Carlo method under different Laplace distribution parameters and sample sizes. The consequences have shown that Bayes estimator has been more efficient than the maximum likelihood estimator and moment estimator in all samples sizes
A new family of distribution named Double-Exponential-X family is proposed. The proposed family is generated from the double exponential distribution. The forms of the probability densities and hazard functions of two distinct subfamilies of the proposed family are examined and reported. Generalproperties such as moment, survival, order statistics, probability weighted moments and quartile functions of the models are investigated. A sub family of the developed family of double –Exponential-X family of the distribution known as double-Exponential-Pareto distribution was used to fit a real life data on the use of antiretroviral drugs. Molecular simulation of efficacy of antiretroviral drugs is conducted to evaluate the performance of the
... Show MoreIn this paper, some estimators for the unknown shape parameters and reliability function of Basic Gompertz distribution were obtained, such as Maximum likelihood estimator and some Bayesian estimators under Squared log error loss function by using Gamma and Jefferys priors. Monte-Carlo simulation was conducted to compare the performance of all estimates of the shape parameter and Reliability function, based on mean squared errors (MSE) and integrated mean squared errors (IMSE's), respectively. Finally, the discussion is provided to illustrate the results that are summarized in tables.