The present work has been characterized by higher order modes in the cavities of the Gyrotron; they are capable of producing RF plasma by developments of it. It uses for fusion systems. We choose the TE31,8 mode in our study. The main problem of gyrotron is the device of the thermal cavity loading. The problem of the thermal loading is solved when any parasitic modes suppress, absence of desired modes; the thermal loading is increased when the high power tube of gyrotron operation is unstable. The mathematical interaction model contains equations that describe the electron motion and the field profiles of the transferred electric modes of the resonator, these are interacting with electrons based on the finite difference method that has been designed to study the starting current, the frequency, quality factor and calculates the roots of the Bessel function by the program we designed in Fortran language. They are used to calculate the operation frequency. Good agreement is between our results and the previous published results both confirm the accuracy of the performance of the designed program.
The main aim of this paper is to apply a new technique suggested by Temimi and Ansari namely (TAM) for solving higher order Integro-Differential Equations. These equations are commonly hard to handle analytically so it is request numerical methods to get an efficient approximate solution. Series solutions of the problem under consideration are presented by means of the Iterative Method (IM). The numerical results show that the method is effective, accurate and easy to implement rapidly convergent series to the exact solution with minimum amount of computation. The MATLAB is used as a software for the calculations.
In the present work a theoretical analysis depending on the new higher order . element in shear deformation theory for simply supported cross-ply laminated plate is developed. The new displacement field of the middle surface expanded as a combination of exponential and trigonometric function of thickness coordinate with the transverse displacement taken to be constant through the thickness. The governing equations are derived using Hamilton’s principle and solved using Navier solution method to obtain the deflection and stresses under uniform sinusoidal load. The effect of many design parameters such as number of laminates, aspect ratio and thickness ratio on static behavior of the laminated composite plate has been studied. The
... Show MoreA New Spectrophotometric Methods are improved for determination Metronidazole (MTZ) and Metronidazolebenzoate (MTZB) depending on1STand 2nd derivative spectrum of the two drugs by using ethanol as a solvent. Many techniques were proportionated with concentration (peak high to base line, peak to peak and peak area). The linearity of the methodsranged between(1-25µg.ml-1) is obtained. The results were precise and accurate throw RSD% were between (0.041-0.751%) and (0.0331-0.452%), Rec% values between (97.78, 101.87%) and (98.033-102.39%) while the LOD between (0.051-0.231 µg.ml-1) and (0.074-1.04 µg.ml-1) and LOQ between (0.170-0.770µg.ml-1) and (0.074-0.313 µg.ml-1) of (MTZ) and of (MTZB) respectively. These Methods were successfully ap
... Show MoreIn this paper is to introduce the concept of hyper AT-algebras is a generalization of AT-algebras and study a hyper structure AT-algebra and investigate some of its properties. “Also, hyper AT-subalgebras and hyper AT-ideal of hyper AT-algebras are studied. We study on the fuzzy theory of hyper AT-ideal of hyper AT-algebras hyper AT-algebra”. “We study homomorphism of hyper AT-algebras which are a common generalization of AT-algebras.
This paper is concerned with combining two different transforms to present a new joint transform FHET and its inverse transform IFHET. Also, the most important property of FHET was concluded and proved, which is called the finite Hankel – Elzaki transforms of the Bessel differential operator property, this property was discussed for two different boundary conditions, Dirichlet and Robin. Where the importance of this property is shown by solving axisymmetric partial differential equations and transitioning to an algebraic equation directly. Also, the joint Finite Hankel-Elzaki transform method was applied in solving a mathematical-physical problem, which is the Hotdog Problem. A steady state which does not depend on time was discussed f
... Show MoreThe study aims to examine the classroom activities of the developed English course (Flying High) for the high school first-grade students, identify creative thinking skills appropriate for this grade, and show the extent the classroom activities involve these skills from the female- teachers ‘point of view. The study adopted the descriptive survey method. The study community consists of all (50) English female-teachers who teach high school first grade in Arar city during the academic year (1440 -1441 A.H, the first semester). The study was applied to all respondents. The researcher used a questionnaire as a study tool. The study revealed that the female-teachers reported their disagreement and refusal of the classroom activities in th
... Show MoreEDIRKTO, an Implicit Type Runge-Kutta Method of Diagonally Embedded pairs, is a novel approach presented in the paper that may be used to solve 4th-order ordinary differential equations of the form . There are two pairs of EDIRKTO, with three stages each: EDIRKTO4(3) and EDIRKTO5(4). The derivation techniques of the method indicate that the higher-order pair is more accurate, while the lower-order pair provides superior error estimates. Next, using these pairs as a basis, we developed variable step codes and applied them to a series of -order ODE problems. The numerical outcomes demonstrated how much more effective their approach is in reducing the quantity of function evaluations needed to resolve fourth-order ODE issues.
This paper is illustrates the sufficient conditions of the uniformly asymptotically stable and the bounded of the zero solution of fifth order nonlinear differential equation with a variable delay τ(t)
This study focuses on studying an oscillation of a second-order delay differential equation. Start work, the equation is introduced here with adequate provisions. All the previous is braced by theorems and examplesthat interpret the applicability and the firmness of the acquired provisions