Preferred Language
Articles
/
jih-2683
Cascade-Forward Neural Network for Volterra Integral Equation Solution
...Show More Authors

The method of solving volterra integral equation by using numerical solution is a simple operation but to require many memory space to compute and save the operation. The importance of this equation appeares new direction to solve the equation by using new methods to avoid obstacles. One of these methods employ neural network for obtaining the solution.

This paper presents a proposed method by using cascade-forward neural network to simulate volterra integral equations solutions. This method depends on training cascade-forward neural network by inputs which represent the mean of volterra integral equations solutions, the target of cascade-forward neural network is to get the desired output of this network. Cascade-forward neural network is trained multi times to obtain the desired output, the training of cascade-forward neural network model terminal when there is no enhancement in result. The model combines all training cascade-forward neural network to obtain the best result. This method proved its successful in training and testing cascade-forward neural network for obtaining the desired output of numerical solution of volterra integral equation for multi intervals. Cascade-forward neural network model measured by calculating MSE to compute the degree of error at each training time.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Mon Jan 01 2024
Journal Name
2nd International Conference For Engineering Sciences And Information Technology (esit 2022): Esit2022 Conference Proceedings
Numerical solution to inverse coefficient problem for hyperbolic equation under overspecified condition of general integral type
...Show More Authors

View Publication
Scopus Crossref
Publication Date
Sat Dec 30 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
The Finite Element Neural Network And Its Applications To Forward And Inverse Problems
...Show More Authors

In this paper, first we   refom1Ulated   the finite   element  model

(FEM)   into   a   neural   network   structure   using   a   simple   two   - dimensional problem. The structure of this neural network is described

, followed  by its   application   to   solving  the forward    and  inverse problems. This model is then extended to the general case and the advantages and  di sadvantages  of  this  approach  are  descri bed  along with an analysis  of  the sensi tivity   of

... Show More
View Publication Preview PDF
Publication Date
Mon Aug 14 2017
Journal Name
International Journal Of Intelligent Computing And Cybernetics
Two efficient methods for solving Schlömilch’s integral equation
...Show More Authors
Purpose

In this paper, the exact solutions of the Schlömilch’s integral equation and its linear and non-linear generalized formulas with application are solved by using two efficient iterative methods. The Schlömilch’s integral equations have many applications in atmospheric, terrestrial physics and ionospheric problems. They describe the density profile of electrons from the ionospheric for awry occurrence of the quasi-transverse approximations. The paper aims to discuss these issues.

Design/methodology/approach

First, the authors apply a regularization meth

... Show More
View Publication
Crossref (2)
Crossref
Publication Date
Sun Sep 07 2014
Journal Name
Baghdad Science Journal
Deriving the Composite Simpson Rule by Using Bernstein Polynomials for Solving Volterra Integral Equations
...Show More Authors

In this paper we use Bernstein polynomials for deriving the modified Simpson's 3/8 , and the composite modified Simpson's 3/8 to solve one dimensional linear Volterra integral equations of the second kind , and we find that the solution computed by this procedure is very close to exact solution.

View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Thu Sep 01 2022
Journal Name
Iraqi Journal Of Physics
Development and Assessment of Feed Forward Back Propagation Neural Network Models to Predict Sunshine Duration
...Show More Authors

         The duration of sunshine is one of the important indicators and one of the variables for measuring the amount of solar radiation collected in a particular area. Duration of solar brightness has been used to study atmospheric energy balance, sustainable development, ecosystem evolution and climate change. Predicting the average values of sunshine duration (SD) for Duhok city, Iraq on a daily basis using the approach of artificial neural network (ANN) is the focus of this paper. Many different ANN models with different input variables were used in the prediction processes. The daily average of the month, average temperature, maximum temperature, minimum temperature, relative humidity, wind direction, cloud level and atmosp

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Jan 01 2020
Journal Name
Desalination And Water Treatment
Combination of the artificial neural network and advection-dispersion equation for modeling of methylene blue dye removal from aqueous solution using olive stones as reactive bed
...Show More Authors

Scopus (12)
Crossref (11)
Scopus Clarivate Crossref
Publication Date
Fri Feb 28 2020
Journal Name
Iraqi Journal Of Science
Homotopy Perturbation Method and Convergence Analysis for the Linear Mixed Volterra-Fredholm Integral Equations
...Show More Authors

In this paper, the homotopy perturbation method is presented for solving the second kind linear mixed Volterra-Fredholm integral equations. Then, Aitken method is used to accelerate the convergence. In this method, a series will be constructed whose sum is the solution of the considered integral equation. Convergence of the constructed series is discussed, and its proof is given; the error estimation is also obtained. For more illustration, the method is applied on several examples and programs, which are written in MATLAB (R2015a) to compute the results. The absolute errors are computed to clarify the efficiency of the method.

View Publication Preview PDF
Scopus (6)
Crossref (3)
Scopus Crossref
Publication Date
Sun Jun 02 2013
Journal Name
Baghdad Science Journal
Some Probability Characteristics Functions of the Solution of Stochastic Fredholm Integral Equation Contains a Known Sine Wave Function
...Show More Authors

Abstract:In this paper, some probability characteristics functions (moments, variances,convariance, and spectral density functions) are found depending upon the smallestvariance of the solution of some stochastic Fredholm integral equation contains as aknown function, the sine wave function

View Publication Preview PDF
Crossref
Publication Date
Sun Jun 05 2011
Journal Name
Baghdad Science Journal
Some Probability Characteristics Functions of the Solution of a Stochastic Non-Linear Fredholm Integral Equation of the Second Kind
...Show More Authors

In this research, some probability characteristics functions (probability density, characteristic, correlation and spectral density) are derived depending upon the smallest variance of the exact solution of supposing stochastic non-linear Fredholm integral equation of the second kind found by Adomian decomposition method (A.D.M)

View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Tue Sep 08 2020
Journal Name
Baghdad Science Journal
Convergence Analysis for the Homotopy Perturbation Method for a Linear System of Mixed Volterra-Fredholm Integral Equations
...Show More Authors

           In this paper, the homotopy perturbation method (HPM) is presented for treating a linear system of second-kind mixed Volterra-Fredholm integral equations. The method is based on constructing the series whose summation is the solution of the considered system. Convergence of constructed series is discussed and its proof is given; also, the error estimation is obtained. Algorithm is suggested and applied on several examples and the results are computed by using MATLAB (R2015a). To show the accuracy of the results and the effectiveness of the method, the approximate solutions of some examples are compared with the exact solution by computing the absolute errors.

View Publication Preview PDF
Scopus (5)
Crossref (1)
Scopus Clarivate Crossref