In this paper, we studied the travelling wave solving for some models of Burger's equations. We used sine-cosine method to solution nonlinear equation and we used direct solution after getting travelling wave equation.
The research aims to find approximate solutions for two dimensions Fredholm linear integral equation. Using the two-variables of the Bernstein polynomials we find a solution to the approximate linear integral equation of the type two dimensions. Two examples have been discussed in detail.
The traveling salesman problem (TSP) is a well-known and important combinatorial optimization problem. The goal is to ï¬nd the shortest tour that visits each city in a given list exactly once and then returns to the starting city. In this paper we exploit the TSP to evaluate the minimum total cost (distance or time) for Iraqi cities. So two main methods are investigated to solve this problem; these methods are; Dynamic Programming (DP) and Branch and Bound Technique (BABT). For the BABT, more than one lower and upper bounds are be derived to gain the best one. The results of BABT are completely identical to DP, with less time for number of cities (n), 5 ≤ n ≤ 25. These results proof the efficiency of BABT compared with so
... Show MoreThe main focus of this research is to examine the Travelling Salesman Problem (TSP) and the methods used to solve this problem where this problem is considered as one of the combinatorial optimization problems which met wide publicity and attention from the researches for to it's simple formulation and important applications and engagement to the rest of combinatorial problems , which is based on finding the optimal path through known number of cities where the salesman visits each city only once before returning to the city of departure n this research , the benefits of( FMOLP) algorithm is employed as one of the best methods to solve the (TSP) problem and the application of the algorithm in conjun
... Show MoreIn the present work, we use the Adomian Decomposition method to find the approximate solution for some cases of the Newell whitehead segel nonlinear differential equation which was solved previously with exact solution by the Homotopy perturbation and the Iteration methods, then we compared the results.
In this paper, third order non-polynomial spline function is used to solve 2nd kind Volterra integral equations. Numerical examples are presented to illustrate the applications of this method, and to compare the computed results with other known methods.
This research aims to solve the nonlinear model formulated in a system of differential equations with an initial value problem (IVP) represented in COVID-19 mathematical epidemiology model as an application using new approach: Approximate Shrunken are proposed to solve such model under investigation, which combines classic numerical method and numerical simulation techniques in an effective statistical form which is shrunken estimation formula. Two numerical simulation methods are used firstly to solve this model: Mean Monte Carlo Runge-Kutta and Mean Latin Hypercube Runge-Kutta Methods. Then two approximate simulation methods are proposed to solve the current study. The results of the proposed approximate shrunken methods and the numerical
... Show More