In this paper, we studied the scheduling of jobs on a single machine. Each of n jobs is to be processed without interruption and becomes available for processing at time zero. The objective is to find a processing order of the jobs, minimizing the sum of maximum earliness and maximum tardiness. This problem is to minimize the earliness and tardiness values, so this model is equivalent to the just-in-time production system. Our lower bound depended on the decomposition of the problem into two subprograms. We presented a novel heuristic approach to find a near-optimal solution for the problem. This approach depends on finding efficient solutions for two problems. The first problem is minimizing total completion time and maximum tardiness. The second is minimizing total completion time and maximum earliness. We used these efficient solutions to find a near-optimal solution for another problem which is a sum of maximum earliness and maximum tardiness. This means we eliminate the total completion time from the two problems. The algorithm was tested on a set of problems of different n. Computational results demonstrate the efficiency of the proposed method.
Chacha 20 is a stream cypher that is used as lightweight on many CPUs that do not have dedicated AES instructions. As stated by Google, that is the reason why they use it on many devices, such as mobile devices, for authentication in TLS protocol. This paper proposes an improvement of chaha20 stream cypher algorithm based on tent and Chebyshev functions (IChacha20). The main objectives of the proposed IChacha20 algorithm are increasing security layer, designing a robust structure of the IChacha20 to be enabled to resist various types of attacks, implementing the proposed algorithm for encryption of colour images, and transiting it in a secure manner. The test results proved that the MSE, PSNR, UQI and NCC metrics
... Show MoreThe main objectives of this pepper are to introduce new classes. We have attempted to obtain coefficient estimates, radius of convexity, Distortion and Growth theorem and other related results for the classes
We obtain the coefficient estimates, extreme points, distortion and growth boundaries, radii of starlikeness, convexity, and close-to-convexity, according to the main purpose of this paper.
In the complex field, special functions are closely related to geometric holomorphic functions. Koebe function is a notable contribution to the study of the geometric function theory (GFT), which is a univalent function. This sequel introduces a new class that includes a more general Koebe function which is holomorphic in a complex domain. The purpose of this work is to present a new operator correlated with GFT. A new generalized Koebe operator is proposed in terms of the convolution principle. This Koebe operator refers to the generality of a prominent differential operator, namely the Ruscheweyh operator. Theoretical investigations in this effort lead to a number of implementations in the subordination function theory. The ti
... Show MoreThis paper is devoted to the analysis of nonlinear singular boundary value problems for ordinary differential equations with a singularity of the different kind. We propose semi - analytic technique using two point osculatory interpolation to construct polynomial solution, and discussion behavior of the solution in the neighborhood of the singular points and its numerical approximation. Two examples are presented to demonstrate the applicability and efficiency of the methods. Finally, we discuss behavior of the solution in the neighborhood of the singularity point which appears to perform satisfactorily for singular problems.
This paper devoted to the analysis of regular singular boundary value problems for ordinary differential equations with a singularity of the different kind , we propose semi - analytic technique using two point osculatory interpolation to construct polynomial solution, and discussion behavior of the solution in the neighborhood of the regular singular points and its numerical approximation. Many examples are presented to demonstrate the applicability and efficiency of the methods. Finally , we discuss behavior of the solution in the neighborhood of the singularity point which appears to perform satisfactorily for singular problems.
In this study, wax worm larvae (Galleria mellonella) were used to examine their ability to degrade and assimilate polyethylene (PE) as an energy source. This idea came from the similarity of wax, that is used as the sole diet for larvae, with PE in composition. Morphology changes, weight loss, FTIR analysis and GC-Mass test were studied to prove the degradation of PE by G. mellonella. The maximum depth of holes on the plastic surface and 16% PE weight loss was due to extensive cutting. The creation of a novel O-H stretching alcohols/phenols group absorbance peak at 3293cm-1 observed in wax worm larvae PE frass samples may be due to the oxidation in their gut. Accordingly, the biodegradation of PE by
... Show MoreThe main objective of this paper is to introduce and study the generality differential operator involving the q-Mittag-Leffler function on certain subclasses of analytic functions. Also, we investigate the inclusion properties of these classes, by using the concept of subordination between analytic functions.
In this paper, we presented new types of Mc-function by using ðœ”-open and ð‘-open sets some of them are weaker than Mc-function and some are stronger, which are ðœ”Mc-function, Mðœ”c-function, ðœ”Mðœ”c-function, ð‘Mc-function, Mð‘c-function and ð‘Mð‘c-function, also we submitted new kinds of continuous functions and compact functions and we illustrated the relationships between these types. The purpose of this paper is to expand the study of Mcfunction and to get results that we need to find the relationship with the types that have been introduced.
This paper is interested in certain subclasses of univalent and bi-univalent functions concerning to shell- like curves connected with k-Fibonacci numbers involving modified Sigmoid activation function θ(t)=2/(1+e^(-t) ) ,t ≥0 in unit disk |z|<1 . For estimating of the initial coefficients |c_2 | , |c_3 |, Fekete-Szego ̈ inequality and the second Hankel determinant have been investigated for the functions in our classes.