In this paper, we studied the scheduling of jobs on a single machine. Each of n jobs is to be processed without interruption and becomes available for processing at time zero. The objective is to find a processing order of the jobs, minimizing the sum of maximum earliness and maximum tardiness. This problem is to minimize the earliness and tardiness values, so this model is equivalent to the just-in-time production system. Our lower bound depended on the decomposition of the problem into two subprograms. We presented a novel heuristic approach to find a near-optimal solution for the problem. This approach depends on finding efficient solutions for two problems. The first problem is minimizing total completion time and maximum tardiness. The second is minimizing total completion time and maximum earliness. We used these efficient solutions to find a near-optimal solution for another problem which is a sum of maximum earliness and maximum tardiness. This means we eliminate the total completion time from the two problems. The algorithm was tested on a set of problems of different n. Computational results demonstrate the efficiency of the proposed method.
Heuristic Program proposal for the treatment of talented emotional and Cognitive problems .
1-The Curtent research aims : to identify the needs of gifted students and their problems and Ways to diagnose .
2-reprepare aproposal heuristic program for the treatment of emotional and Cognitive talented problems .
Research . Methodology : analytical and descriptive .
Define the terms
Virt uoso is the per for mance of the privileged Mstmrave performances appear in any area of his Values .
Chapter ll : Includes recipes gifted child and Methods diagnosis gifted by filtrontion and standavds of personal and mental and behavioral Doramwaliman and parental Features and Leader in the detection of the gif
... Show MoreScheduling Timetables for courses in the big departments in the universities is a very hard problem and is often be solved by many previous works although results are partially optimal. This work implements the principle of an evolutionary algorithm by using genetic theories to solve the timetabling problem to get a random and full optimal timetable with the ability to generate a multi-solution timetable for each stage in the collage. The major idea is to generate course timetables automatically while discovering the area of constraints to get an optimal and flexible schedule with no redundancy through the change of a viable course timetable. The main contribution in this work is indicated by increasing the flexibility of generating opti
... Show MoreThe aims of the paper are to present a modified symmetric fuzzy approach to find the best workable compromise solution for quadratic fractional programming problems (QFPP) with fuzzy crisp in both the objective functions and the constraints. We introduced a modified symmetric fuzzy by proposing a procedure, that starts first by converting the quadratic fractional programming problems that exist in the objective functions to crisp numbers and then converts the linear function that exists in the constraints to crisp numbers. After that, we applied the fuzzy approach to determine the optimal solution for our quadratic fractional programming problem which is supported theoretically and practically. The computer application for the algo
... Show MoreThis paper presents a linear fractional programming problem (LFPP) with rough interval coefficients (RICs) in the objective function. It shows that the LFPP with RICs in the objective function can be converted into a linear programming problem (LPP) with RICs by using the variable transformations. To solve this problem, we will make two LPP with interval coefficients (ICs). Next, those four LPPs can be constructed under these assumptions; the LPPs can be solved by the classical simplex method and used with MS Excel Solver. There is also argumentation about solving this type of linear fractional optimization programming problem. The derived theory can be applied to several numerical examples with its details, but we show only two examples
... Show MoreNowad ays, with the development of internet communication that provides many facilities to the user leads in turn to growing unauthorized access. As a result, intrusion detection system (IDS) becomes necessary to provide a high level of security for huge amount of information transferred in the network to protect them from threats. One of the main challenges for IDS is the high dimensionality of the feature space and how the relevant features to distinguish the normal network traffic from attack network are selected. In this paper, multi-objective evolutionary algorithm with decomposition (MOEA/D) and MOEA/D with the injection of a proposed local search operator are adopted to solve the Multi-objective optimization (MOO) followed by Naï
... Show MoreThe presented study investigated the scheduling regarding jobs on a single machine. Each job will be processed with no interruptions and becomes available for the processing at time 0. The aim is finding a processing order with regard to jobs, minimizing total completion time , total late work , and maximal tardiness which is an NP-hard problem. In the theoretical part of the present work, the mathematical formula for the examined problem will be presented, and a sub-problem of the original problem of minimizing the multi-objective functions is introduced. Also, then the importance regarding the dominance rule (DR) that could be applied to the problem to improve good solutions will be shown. While in the practical part, two
... Show MoreThe continuous increases in the size of current telecommunication infrastructures have led to the many challenges that existing algorithms face in underlying optimization. The unrealistic assumptions and low efficiency of the traditional algorithms make them unable to solve large real-life problems at reasonable times.
The use of approximate optimization techniques, such as adaptive metaheuristic algorithms, has become more prevalent in a diverse research area. In this paper, we proposed the use of a self-adaptive differential evolution (jDE) algorithm to solve the radio network planning (RNP) problem in the context of the upcoming generation 5G. The experimental results prove the jDE with best vecto
Automatic document summarization technology is evolving and may offer a solution to the problem of information overload. Multi-document summarization is an optimization problem demanding optimizing more than one objective function concurrently. The proposed work considers a balance of two significant objectives: content coverage and diversity while generating a summary from a collection of text documents. Despite the large efforts introduced from several researchers for designing and evaluating performance of many text summarization techniques, their formulations lack the introduction of any model that can give an explicit representation of – coverage and diversity – the two contradictory semantics of any summary. The design of gener
... Show MoreEstablishing complete and reliable coverage for a long time-span is a crucial issue in densely surveillance wireless sensor networks (WSNs). Many scheduling algorithms have been proposed to model the problem as a maximum disjoint set covers (DSC) problem. The goal of DSC based algorithms is to schedule sensors into several disjoint subsets. One subset is assigned to be active, whereas, all remaining subsets are set to sleep. An extension to the maximum disjoint set covers problem has also been addressed in literature to allow for more advance sensors to adjust their sensing range. The problem, then, is extended to finding maximum number of overlapped set covers. Unlike all related works which concern with the disc sensing model, the cont
... Show More