In this paper, we studied the scheduling of jobs on a single machine. Each of n jobs is to be processed without interruption and becomes available for processing at time zero. The objective is to find a processing order of the jobs, minimizing the sum of maximum earliness and maximum tardiness. This problem is to minimize the earliness and tardiness values, so this model is equivalent to the just-in-time production system. Our lower bound depended on the decomposition of the problem into two subprograms. We presented a novel heuristic approach to find a near-optimal solution for the problem. This approach depends on finding efficient solutions for two problems. The first problem is minimizing total completion time and maximum tardiness. The second is minimizing total completion time and maximum earliness. We used these efficient solutions to find a near-optimal solution for another problem which is a sum of maximum earliness and maximum tardiness. This means we eliminate the total completion time from the two problems. The algorithm was tested on a set of problems of different n. Computational results demonstrate the efficiency of the proposed method.
In the present paper, three reliable iterative methods are given and implemented to solve the 1D, 2D and 3D Fisher’s equation. Daftardar-Jafari method (DJM), Temimi-Ansari method (TAM) and Banach contraction method (BCM) are applied to get the exact and numerical solutions for Fisher's equations. The reliable iterative methods are characterized by many advantages, such as being free of derivatives, overcoming the difficulty arising when calculating the Adomian polynomial boundaries to deal with nonlinear terms in the Adomian decomposition method (ADM), does not request to calculate Lagrange multiplier as in the Variational iteration method (VIM) and there is no need to create a homotopy like in the Homotopy perturbation method (H
... Show MoreThis study presents the execution of an iterative technique suggested by Temimi and Ansari (TA) method to approximate solutions to a boundary value problem of a 4th-order nonlinear integro-differential equation (4th-ONIDE) of the type Kirchhoff which appears in the study of transverse vibration of hinged shafts. This problem is difficult to solve because there is a non-linear term under the integral sign, however, a number of authors have suggested iterative methods for solving this type of equation. The solution is obtained as a series that merges with the exact solution. Two examples are solved by TA method, the results showed that the proposed technique was effective, accurate, and reliable. Also, for greater reliability, the approxim
... Show MoreMeerkat Clan Algorithm (MCA) is a nature-based metaheuristic algorithm which imitates the intelligent behavior of the meerkat animal. This paper presents an improvement on the MCA based on a chaotic map and crossover strategy (MCA-CC). These two strategies increase the diversification and intensification of the proposed algorithm and boost the searching ability to find more quality solutions. The 0-1 knapsack problem was solved by the basic MCA and the improved version of this algorithm (MCA-CC). The performance of these algorithms was tested on low and high dimensional problems. The experimental results demonstrate that the proposed algorithm had overcome the basic algorithm in terms of solution quality, speed a
... Show MoreFuzzy C-means (FCM) is a clustering method used for collecting similar data elements within the group according to specific measurements. Tabu is a heuristic algorithm. In this paper, Probabilistic Tabu Search for FCM implemented to find a global clustering based on the minimum value of the Fuzzy objective function. The experiments designed for different networks, and cluster’s number the results show the best performance based on the comparison that is done between the values of the objective function in the case of using standard FCM and Tabu-FCM, for the average of ten runs.
The researchers have tried to focus on how to determine the number of pipes that are present in one obtained hyperbola in radargram profile. Ground Penetration Radar (GPR) survey was performed to distinguish between two zero-spaced iron pipes in radargram. The field work was carried out by constructing artificial rectangular models with dimensions of length, width, and depth equal to 10.0, 1.0, 0.65 meter respectively that filled with dry clastic mixture deposit, three twin sets of air filled iron pipes of 15.24 cm (6 inch) diameter were buried horizontally and vertically inside the mixture at different distances together. Visual and Numerical interpretation were chosen to get the best results. In the visual interpretation, the amplitude
... Show MoreThe researchers have tried to focus on how to determine the number of pipes that are present in one obtained hyperbola in radargram profile. Ground Penetration Radar (GPR) survey was performed to distinguish between two zero-spaced iron pipes in radargram. The field work was carried out by constructing artificial rectangular models with dimensions of length, width, and depth equal to 10.0, 1.0, 0.65 meter respectively that filled with dry clastic mixture deposit, three twin sets of air filled iron pipes of 15.24 cm (6 inch) diameter were buried horizontally and vertically inside the mixture at different distances together. Visual and Numerical interpretation were chosen to get the best results. In the visual interpretation, the amplitude
... Show MoreThis paper has the interest of finding the approximate solution (APPS) of a nonlinear variable coefficients hyperbolic boundary value problem (NOLVCHBVP). The given boundary value problem is written in its discrete weak form (WEFM) and proved have a unique solution, which is obtained via the mixed Galerkin finite element with implicit method that reduces the problem to solve the Galerkin nonlinear algebraic system (GNAS). In this part, the predictor and the corrector techniques (PT and CT, respectively) are proved at first convergence and then are used to transform the obtained GNAS to a linear GLAS . Then the GLAS is solved using the Cholesky method (ChMe). The stability and the convergence of the method are stud
... Show MoreAggregate production planning (APP) is one of the most significant and complicated problems in production planning and aim to set overall production levels for each product category to meet fluctuating or uncertain demand in future. and to set decision concerning hiring, firing, overtime, subcontract, carrying inventory level. In this paper, we present a simulated annealing (SA) for multi-objective linear programming to solve APP. SA is considered to be a good tool for imprecise optimization problems. The proposed model minimizes total production and workforce costs. In this study, the proposed SA is compared with particle swarm optimization (PSO). The results show that the proposed SA is effective in reducing total production costs and req
... Show More