In this paper, a new procedure is introduced to estimate the solution for the three-point boundary value problem which is instituted on the use of Morgan-Voyce polynomial. In the beginning, Morgan-Voyce polynomial along with their important properties is introduced. Next, this polynomial with aid of the collocation method utilized to modify the differential equation with boundary conditions to the algebraic system. Finally, the examples approve the validity and accuracy of the proposed method.
The paper is concerned with the state and proof of the solvability theorem of unique state vector solution (SVS) of triple nonlinear hyperbolic boundary value problem (TNLHBVP), via utilizing the Galerkin method (GAM) with the Aubin theorem (AUTH), when the boundary control vector (BCV) is known. Solvability theorem of a boundary optimal control vector (BOCV) with equality and inequality state vector constraints (EINESVC) is proved. We studied the solvability theorem of a unique solution for the adjoint triple boundary value problem (ATHBVP) associated with TNLHBVP. The directional derivation (DRD) of the "Hamiltonian"(DRDH) is deduced. Finally, the necessary theorem (necessary conditions "NCOs") and the sufficient theorem (sufficient co
... Show MoreGenerally, radiologists analyse the Magnetic Resonance Imaging (MRI) by visual inspection to detect and identify the presence of tumour or abnormal tissue in brain MR images. The huge number of such MR images makes this visual interpretation process, not only laborious and expensive but often erroneous. Furthermore, the human eye and brain sensitivity to elucidate such images gets reduced with the increase of number of cases, especially when only some slices contain information of the affected area. Therefore, an automated system for the analysis and classification of MR images is mandatory. In this paper, we propose a new method for abnormality detection from T1-Weighted MRI of human head scans using three planes, including axial plane, co
... Show MoreSummary
The subject ( meaning of added verbs) is one of the main subjects
which study in morphology since in Arabic language. It is include the meaning
of each format, and the increased meaning occurred by this increment in the
verbs.
The (strain) is one of very important meaning in this subject, it takes a
wide area of morphology studies, and interesting of scientists and
researchists.
There are two famous formats for this meaning; (infa la انفع
ل ), and (ifta
la افتع
ل ). Also There are another formats for the same meaning, but less than
the first two in use, they are; (taf ala تفعّ
ل ), (tafa ala تفاع
ل ), (taf lala ) ,(تفعل
ل
ifanlala افعنلل ), (ifanla .(
In this paper we shall generalize fifth explicit Runge-Kutta Feldberg(ERKF(5)) and Continuous explicit Runge-Kutta (CERK) method using shooting method to solve second order boundary value problem which can be reduced to order one.These methods we shall call them as shooting Continuous Explicit Runge-Kutta method, the results are computed using matlab program.
This paper has the interest of finding the approximate solution (APPS) of a nonlinear variable coefficients hyperbolic boundary value problem (NOLVCHBVP). The given boundary value problem is written in its discrete weak form (WEFM) and proved have a unique solution, which is obtained via the mixed Galerkin finite element with implicit method that reduces the problem to solve the Galerkin nonlinear algebraic system (GNAS). In this part, the predictor and the corrector techniques (PT and CT, respectively) are proved at first convergence and then are used to transform the obtained GNAS to a linear GLAS . Then the GLAS is solved using the Cholesky method (ChMe). The stability and the convergence of the method are stud
... Show MoreIn this paper, we have been used the Hermite interpolation method to solve second order regular boundary value problems for singular ordinary differential equations. The suggest method applied after divided the domain into many subdomains then used Hermite interpolation on each subdomain, the solution of the equation is equal to summation of the solution in each subdomain. Finally, we gave many examples to illustrate the suggested method and its efficiency.
This paper deals with finding the approximation solution of a nonlinear parabolic boundary value problem (NLPBVP) by using the Galekin finite element method (GFEM) in space and Crank Nicolson (CN) scheme in time, the problem then reduce to solve a Galerkin nonlinear algebraic system(GNLAS). The predictor and the corrector technique (PCT) is applied here to solve the GNLAS, by transforms it to a Galerkin linear algebraic system (GLAS). This GLAS is solved once using the Cholesky method (CHM) as it appear in the matlab package and once again using the Cholesky reduction order technique (CHROT) which we employ it here to save a massive time. The results, for CHROT are given by tables and figures and show
... Show More