In this paper, a novel coronavirus (COVID-19) model is proposed and investigated. In fact, the pandemic spread through a close contact between infected people and other people but sometimes the infected people could show two cases; the first is symptomatic and the other is asymptomatic (carrier) as the source of the risk. The outbreak of Covid-19 virus is described by a mathematical model dividing the population into four classes. The first class represents the susceptible people who are unaware of the disease. The second class refers to the susceptible people who are aware of the epidemic by media coverage. The third class is the carrier individuals (asymptomatic) and the fourth class represents the infected individuals. The existence, uniqueness and bounded-ness of the solutions of the model are discussed. All possible equilibrium points are determined. The locally asymptotically stable of the model is studied. Suitable Lyapunov functions are used to investigate the globally asymptotical stability of the model. Finally, numerical simulation is carried out to confirm the analytical results and to understand the effect of varying the parameters of how the disease spreads.
The emerge of capitalism beside appearing modern and contemporary political systems which had become hold out it is semi-domination on more vital space of human community life, it is through some vital apparatus, which the free market apparatus had make important one which depend on achieve the privileges of the capitalism elite whom standing on it, especially the finance elite. Thus the achievement of the profit had become the main podcasted of those elite which whom the really advancer of the Globalization system, this is which incarnated by the appears and extend of the (COVID-19) fatality pandemic in the end of last year, whereas reveals widespread of it in more than one states in the world, especially the developed coun
... Show MoreAfter the outbreak of COVID-19, immediately it converted from epidemic to pandemic. Radiologic images of CT and X-ray have been widely used to detect COVID-19 disease through observing infrahilar opacity in the lungs. Deep learning has gained popularity in diagnosing many health diseases including COVID-19 and its rapid spreading necessitates the adoption of deep learning in identifying COVID-19 cases. In this study, a deep learning model, based on some principles has been proposed for automatic detection of COVID-19 from X-ray images. The SimpNet architecture has been adopted in our study and trained with X-ray images. The model was evaluated on both binary (COVID-19 and No-findings) classification and multi-class (COVID-19, No-findings
... Show MoreThe study aims to identify the degree of implementation of the coronavirus prevention standards (covid-19) in the kingdom of Saudi Arabia and compare it with the families of intellectual disabilities. The study population consisted of all families residing in the Kingdom of Saudi Arabia. To achieve the objectives of the research, the analytical descriptive approach was employed. The study sample consisted of (372) families, among them (84) families with intellectual disabilities, and (288) families without intellectual disabilities. They were chosen from the Saudi community according to what is available for collection in a simple random way, using the standard criteria for the prevention of coronavirus (Covid- 19) Prepared by the resear
... Show MoreThe research aims to explain the role of the flexible budget in assessing the feedback resulting from deviations by comparing the actual results with the planned performance in light of the economic crisis that the world witnessed during the spread of Corona disease. As most companies, including the Electronic Industries Company, face the problem of controlling production costs and are trying hard to reduce these costs to the lowest level starting from measuring these costs and allocating them and distributing them to products. This helps in controlling deviations and thus the flexible budget becomes a tool that helps in controlling elements Costs
This research aims to numerically solve a nonlinear initial value problem presented as a system of ordinary differential equations. Our focus is on epidemiological systems in particular. The accurate numerical method that is the Runge-Kutta method of order four has been used to solve this problem that is represented in the epidemic model. The COVID-19 mathematical epidemic model in Iraq from 2020 to the next years is the application under study. Finally, the results obtained for the COVID-19 model have been discussed tabular and graphically. The spread of the COVID-19 pandemic can be observed via the behavior of the different stages of the model that approximates the behavior of actual the COVID-19 epidemic in Iraq. In our study, the COV
... Show MoreThe objective of this review was to describe the COVID-19 complications after recovery.
The researchers systematically reviewed studies that reported post-COVID-19 complications from three databases: PubMed, Google Scholar and the World Health Organization (WHO) COVID-19 database. The search was conducted between 21 November 2020 and 14 January 2021. Inclusion criteria were articles written in English, with primary data, reporting complications of COVID-19 after full
In this paper, a compartmental differential epidemic model of COVID-19 pandemic transmission is constructed and analyzed that accounts for the effects of media coverage. The model can be categorized into eight distinct divisions: susceptible individuals, exposed individuals, quarantine class, infected individuals, isolated class, infectious material in the environment, media coverage, and recovered individuals. The qualitative analysis of the model indicates that the disease-free equilibrium point is asymptotically stable when the basic reproduction number R0 is less than one. Conversely, the endemic equilibrium is globally asymptotically stable when R0 is bigger than one. In addition, a sensitivity analysis is conducted to determine which
... Show More