Preferred Language
Articles
/
jih-2563
Using Entropy and Linear Exponential Loos Function Estimators the Parameter and Reliability Function of Inverse Rayleigh Distribution
...Show More Authors

     This paper is devoted to compare the performance of non-Bayesian estimators represented by the Maximum likelihood estimator of the scale parameter and reliability function of inverse Rayleigh distribution with Bayesian estimators obtained under two types of loss function specifically; the linear, exponential (LINEX) loss function and Entropy loss function, taking into consideration the informative and non-informative priors. The  performance of such estimators assessed on the basis of mean square error (MSE) criterion. The Monte Carlo simulation experiments are conducted in order to obtain the required results. 

 

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Wed May 24 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Experimental Comparison between Classical and Bayes Estimators for the Parameter of Exponential Distribution
...Show More Authors

This paper is interested in comparing the performance of the traditional methods to estimate parameter of exponential distribution (Maximum Likelihood Estimator, Uniformly Minimum Variance Unbiased Estimator) and the Bayes Estimator in the case of data to meet the requirement of exponential distribution and in the case away from the distribution due to the presence of outliers (contaminated values). Through the employment of simulation (Monte Carlo method) and the adoption of the mean square error (MSE) as criterion of statistical comparison between the performance of the three estimators for different sample sizes ranged between small, medium and large        (n=5,10,25,50,100) and different cases (wit

... Show More
View Publication Preview PDF
Publication Date
Thu Apr 20 2023
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
A Class of Exponential Rayleigh Distribution and New Modified Weighted Exponential Rayleigh Distribution with Statistical Properties
...Show More Authors

This paper deals with the mathematical method for extracting the Exponential Rayleighh  distribution based on mixed between the cumulative distribution function of Exponential distribution and  the cumulative distribution function of Rayleigh distribution using an application (maximum), as well as derived different statistical properties for  distribution, and present a structure of a new distribution based on a modified weighted version of Azzalini’s (1985) named Modified Weighted Exponential Rayleigh  distribution such that this new distribution is generalization of the  distribution and provide some special models of the  distribution, as well as derived different statistical properties for  distribution

View Publication Preview PDF
Crossref
Publication Date
Wed Apr 25 2018
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
The Comparison Between the Bayes Estimator and the Maximum Likelihood Estimator of the Reliability Function for Negative Exponential Distribution
...Show More Authors

     In this paper, the maximum likelihood estimator and the Bayes estimator of the reliability function for negative exponential distribution has been derived, then a Monte –Carlo simulation technique was employed to compare the performance of such estimators. The integral mean square error (IMSE) was used as a criterion for this comparison. The simulation results displayed that the Bayes estimator performed better than the maximum likelihood estimator for different samples sizes.

View Publication Preview PDF
Crossref
Publication Date
Thu Jul 20 2023
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Bayesian Approach for estimating the unknown Scale parameter of Erlang Distribution Based on General Entropy Loss Function
...Show More Authors

We are used Bayes estimators for unknown scale parameter  when shape Parameter  is known of Erlang distribution. Assuming different informative priors for unknown scale  parameter. We derived The posterior density with posterior mean and posterior variance using different informative priors for unknown scale parameter  which are the inverse exponential distribution, the inverse chi-square distribution, the inverse Gamma distribution, and the standard Levy distribution as prior. And we derived Bayes estimators based on the general entropy loss function (GELF) is used the Simulation method to obtain the results. we generated different cases for the parameters of the Erlang model, for different sample sizes. The estimates have been comp

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Sep 01 2010
Journal Name
Journal Of Economics And Administrative Sciences
Using simulation to estimate parameters and reliability function for extreme value distribution
...Show More Authors

   This study includes Estimating scale parameter, location parameter  and reliability function  for Extreme Value (EXV) distribution by two methods, namely: -
- Maximum Likelihood Method (MLE).
- Probability Weighted Moments Method (PWM).

 Used simulations to generate the required samples to estimate the parameters and reliability function of different sizes(n=10,25,50,100) , and give real values for the parameters are and , replicate the simulation experiments (RP=1000)

... Show More
View Publication Preview PDF
Crossref
Publication Date
Fri Oct 20 2023
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Truncated Inverse Generalized Rayleigh Distribution and Some Properties
...Show More Authors

Truncated distributions arise naturally in many practical situations. It’s a conditional distribution that develops when the parent distribution's domain is constrained to a smaller area. The distribution of a right truncated is one of the types of a single truncated that is restricted within a specific field and usually occurs when the specified period for the study is complete.  Hence, this paper introduces Right Truncated Inverse Generalized Rayleigh Distribution (RTIGRD) with two parameters  is introduced. Then, provided some properties such as; (probability density function, cumulative distribution function (CDF), survival function, hazard function, ‎rth moment, mean,   variance, Moment Generating Function, Skewness, kurtosi

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Sun Apr 01 2018
Journal Name
Journal Of Economics And Administrative Sciences
Bayes Estimators for the Parameter of the Inverted Exponential Distribution Under different Double informative priors
...Show More Authors

In this paper, we present a comparison of double informative priors which are assumed for the parameter of inverted exponential distribution.To estimate the parameter of inverted exponential distribution by using Bayes estimation ,will be  used two different kind of information in the Bayes estimation; two different priors have been selected for the parameter of inverted exponential distribution. Also assumed Chi-squared - Gamma distribution, Chi-squared - Erlang distribution, and- Gamma- Erlang distribution as double priors. The results are the derivations of these estimators under the squared error loss function with three different double priors.

Additionally Maximum likelihood estimation method

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Dec 01 2019
Journal Name
Journal Of Economics And Administrative Sciences
Estimating the reliability function of Kumaraswamy distribution data
...Show More Authors

The aim of this study is to estimate the parameters and reliability function for kumaraswamy distribution of this two positive parameter  (a,b > 0), which is a continuous probability that has many characterstics with the beta distribution with extra advantages.

The shape of the function for this distribution and the most important characterstics are explained and estimated the two parameter (a,b) and the reliability function for this distribution by using the maximum likelihood method (MLE) and Bayes methods. simulation experiments are conducts to explain the behaviour of the estimation methods for different sizes depending on the mean squared error criterion the results show that the Bayes is bet

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Mon Jul 20 2020
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Estimation of the Reliability Function of Basic Gompertz Distribution under Different Priors
...Show More Authors

In this paper, some estimators for the reliability function R(t) of Basic Gompertz (BG) distribution have been obtained, such as Maximum likelihood estimator, and Bayesian estimators under General Entropy loss function by assuming non-informative prior by using Jefferys prior and informative prior represented by Gamma and inverted Levy priors. Monte-Carlo simulation is conducted to compare the performance of all estimates of the R(t), based on integrated mean squared.

View Publication Preview PDF
Crossref
Publication Date
Fri Jul 28 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Estimation of the Two Parameters for Generalized Rayleigh Distribution Function Using Simulation Technique
...Show More Authors

     In this paper, suggested formula as well a conventional method for estimating the twoparameters (shape and scale) of the Generalized Rayleigh Distribution was proposed. For different sample sizes (small, medium, and large) and assumed several contrasts for the two parameters a percentile estimator was been used. Mean Square Error was implemented as an indicator of performance and comparisons of the performance have been carried out through data analysis and computer simulation between the suggested formulas versus the studied formula according to the applied indicator. It was observed from the results that the suggested method which was performed for the first time (as far as we know), had highly advantage than t

... Show More
View Publication Preview PDF