In this paper, we introduce a new class of Weighted Rayleigh Distribution based on two parameters, one is the scale parameter and the other is the shape parameter introduced in Rayleigh distribution. The main properties of this class are derived and investigated . The moment method and least square method are used to obtain estimators of parameters of this distribution. The probability density function, survival function, cumulative distribution and hazard function are derived and found. Real data sets are collected to investigate two methods that depend on in this study. A comparison is made between two methods of estimation and clarifies that MLE method is better than the OLS method by using the mean squares error.
The dual nature of asphalt binder necessitates improvements to mitigate rutting and fatigue since it performs as an elastic material under the regime of rapid loading or cold temperatures and as a viscous fluid at elevated temperatures. The present investigation assesses the effectiveness of Nano Alumina (NA), Nano Silica (NS), and Nano Titanium Dioxide (NT) at weight percentages of 0, 2, 4, 6, and 8% in asphalt cement to enhance both asphalt binder and mixture performance. Binder evaluations include tests for consistency, thermal susceptibility, aging, and workability, while mixture assessments focus on Marshall properties, moisture susceptibility, resilient modulus, permanent deformation, and fatigue characteristics. NS notably im
... Show MoreThis paper is concerned with the study of the T-norms and the quantum logic functions on BL-algebra, respectively, along with their association with the classical probability space. The proposed constructions depend on demonstrating each type of the T-norms with respect to the basic probability of binary operation. On the other hand, we showed each quantum logic function with respect to some binary operations in probability space, such as intersection, union, and symmetric difference. Finally, we demonstrated the main results that explain the relationships among the T-norms and quantum logic functions. In order to show those relations and their related properties, different examples were built.
The aim of this paper is to design fast neural networks to approximate periodic functions, that is, design a fully connected networks contains links between all nodes in adjacent layers which can speed up the approximation times, reduce approximation failures, and increase possibility of obtaining the globally optimal approximation. We training suggested network by Levenberg-Marquardt training algorithm then speeding suggested networks by choosing most activation function (transfer function) which having a very fast convergence rate for reasonable size networks. In all algorithms, the gradient of the performance function (energy function) is used to determine how to
... Show MoreIn this paper, making use of the q-R uscheweyh differential operator , and the notion of t h e J anowski f unction, we study some subclasses of holomorphic f- unction s . Moreover , we obtain so me geometric characterization like co efficient es timat es , rad ii of starlikeness ,distortion theorem , close- t o- convexity , con vexity, ext reme point s, neighborhoods, and the i nte gral mean inequalities of func tions affiliation to these c lasses
In this paper, a new class of non-convex functions called semi strongly (
In this paper we offer two new subclasses of an open unit disk of r-fold symmetric bi-univalent functions. The Taylor-Maclaurin coefficients have their coefficient bounds calculated. Furthermore, for functions in , we have solved Fekete- functional issues. For the applicable classes, there are also a few particular special motivator results.
This paper is dealing with non-polynomial spline functions "generalized spline" to find the approximate solution of linear Volterra integro-differential equations of the second kind and extension of this work to solve system of linear Volterra integro-differential equations. The performance of generalized spline functions are illustrated in test examples
In this paper we use non-polynomial spline functions to develop numerical methods to approximate the solution of 2nd kind Volterra integral equations. Numerical examples are presented to illustrate the applications of these method, and to compare the computed results with other known methods.
In this paper, the class of meromorphic multivalent functions of the form by using fractional differ-integral operators is introduced. We get Coefficients estimates, radii of convexity and star likeness. Also closure theorems and distortion theorem for the class , is calculaed.
This research involves studying the influence of increasing the
number of Gaussian points and the style of their distribution, on a circular exit pupil, on the numerical calculations accuracy of the point spread function for an ideal optical system and another system having focus error of (0.25 A. and 0.5 A. )
It was shown that the accuracy of the results depends on the type of
distributing points on the exit pupil. Also, the accuracy increases with the increase of the number of points (N) and the increase of aberrations which requires on increas (N).