Preferred Language
Articles
/
jih-2557
The Necessary Condition for Optimal Boundary Control Problems for Triple Elliptic Partial Differential Equations
...Show More Authors

       In this work, we prove that the triple linear partial differential equations (PDEs) of elliptic type (TLEPDEs) with a given classical continuous boundary control vector (CCBCVr) has a unique "state" solution vector (SSV)  by utilizing the Galerkin's method (GME). Also, we prove the existence of a classical continuous boundary optimal control vector (CCBOCVr) ruled by the TLEPDEs. We study the existence solution for the triple adjoint equations (TAJEs) related with the triple state equations (TSEs). The Fréchet derivative (FDe) for the objective function is derived. At the end we prove the necessary "conditions" theorem (NCTh) for optimality for the problem.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Wed Jan 01 2025
Journal Name
Journal Of Animal Health And Production
The Control and Preventative Measures for the Health Problems of Pets
...Show More Authors

View Publication Preview PDF
Scopus Crossref
Publication Date
Tue Mar 30 2021
Journal Name
Baghdad Science Journal
Solvability of Some Types for Multi-fractional Integro-Partial Differential Equation
...Show More Authors

In this article, the solvability of some proposal types of the multi-fractional integro-partial differential system has been discussed in details by using the concept of abstract Cauchy problem and certain semigroup operators and some necessary and sufficient conditions. 

View Publication Preview PDF
Scopus Clarivate Crossref
Publication Date
Wed Jan 01 2020
Journal Name
Arab Journal Of Basic And Applied Sciences
Boundary-domain integral method and homotopy analysis method for systems of nonlinear boundary value problems in environmental engineering
...Show More Authors

View Publication
Crossref (2)
Crossref
Publication Date
Mon Nov 01 2021
Journal Name
Proceedings Of First International Conference On Mathematical Modeling And Computational Science: Icmmcs 2020
Study the Stability for Ordinary Differential Equations Using New Techniques via Numerical Methods
...Show More Authors

Nonlinear differential equation stability is a very important feature of applied mathematics, as it has a wide variety of applications in both practical and physical life problems. The major object of the manuscript is to discuss and apply several techniques using modify the Krasovskii's method and the modify variable gradient method which are used to check the stability for some kinds of linear or nonlinear differential equations. Lyapunov function is constructed using the variable gradient method and Krasovskii’s method to estimate the stability of nonlinear systems. If the function of Lyapunov is positive, it implies that the nonlinear system is asymptotically stable. For the nonlinear systems, stability is still difficult even though

... Show More
Scopus (8)
Scopus
Publication Date
Tue Sep 29 2020
Journal Name
Iraqi Journal Of Science
Mixed Implicit Galerkin – Frank Wolf, Gradient and Gradient Projection Methods for Solving Classical Optimal Control Problem Governed by Variable Coefficients, Linear Hyperbolic, Boundary Value Problem
...Show More Authors

This paper deals with testing a numerical solution for the discrete classical optimal control problem governed by a linear hyperbolic boundary value problem with variable coefficients. When the discrete classical control is fixed, the proof of the existence and uniqueness theorem for the discrete solution of the discrete weak form is achieved. The existence theorem for the discrete classical optimal control and the necessary conditions for optimality of the problem are proved under suitable assumptions. The discrete classical optimal control problem (DCOCP) is solved by using the mixed Galerkin finite element method to find the solution of the discrete weak form (discrete state). Also, it is used to find the solution for the discrete adj

... Show More
View Publication Preview PDF
Scopus Crossref
Publication Date
Wed Mar 10 2021
Journal Name
Baghdad Science Journal
Approximated Methods for Linear Delay Differential Equations Using Weighted Residual Methods
...Show More Authors

The main work of this paper is devoted to a new technique of constructing approximated solutions for linear delay differential equations using the basis functions power series functions with the aid of Weighted residual methods (collocations method, Galerkin’s method and least square method).

View Publication Preview PDF
Crossref
Publication Date
Sun Oct 30 2022
Journal Name
Iraqi Journal Of Science
Exact Solution for Systems of Nonlinear (2+1)D-Differential Equations
...Show More Authors

      The aim of this article is to present the exact analytical solution for models as system of (2+1) dimensional PDEs by using a reliable manner based on combined LA-transform with decomposition technique and the results have shown a high-precision, smooth and speed convergence to the exact solution compared with other classic methods. The suggested approach does not need any discretization of the domain or presents assumptions or neglect for a small parameter in the problem and does not need to convert the nonlinear terms into linear ones. The convergence of series solution has been shown with two illustrated examples such (2+1)D- Burger's system and (2+1)D- Boiti-Leon-Pempinelli (BLP) system.

View Publication Preview PDF
Scopus (5)
Crossref (2)
Scopus Crossref
Publication Date
Mon Oct 01 2012
Journal Name
Computers & Mathematics With Applications
Boundary element formulations for the numerical solution of two-dimensional diffusion problems with variable coefficients
...Show More Authors

View Publication
Crossref (19)
Crossref
Publication Date
Sun Sep 07 2014
Journal Name
Baghdad Science Journal
An Algorithm for nth Order Intgro-Differential Equations by Using Hermite Wavelets Functions
...Show More Authors

In this paper, the construction of Hermite wavelets functions and their operational matrix of integration is presented. The Hermite wavelets method is applied to solve nth order Volterra integro diferential equations (VIDE) by expanding the unknown functions, as series in terms of Hermite wavelets with unknown coefficients. Finally, two examples are given

View Publication Preview PDF
Crossref
Publication Date
Wed Oct 28 2020
Journal Name
Iraqi Journal Of Science
Approximate Solutions for Systems of Volterra Integro-differential Equations Using Laplace –Adomian Method
...Show More Authors

Some modified techniques are used in this article in order to have approximate solutions for systems of Volterra integro-differential equations. The suggested techniques are the so called Laplace-Adomian decomposition method and Laplace iterative method. The proposed methods are robust and accurate as can be seen from the given illustrative examples and from the comparison that are made with the exact solution.

View Publication Preview PDF
Scopus Crossref