The aim of this research is to evaluate the effect of glucose and sodium chloride on biofilm formation by bacteria causing wound infection. For this purpose, 1% and 2% concentration of each of glucose and sodium chloride were used to test the biofilm formation potential of Staphylococcus aureus and Pseudomonas aeruginosa, which were the most common abundant bacteria that cause infection by biofilm. Each of the concentrations was kept in contact with the pathogenic bacteria for 24 hours. After the period of incubation, the concentration of 1% of glucose enhanced moderate biofilm formation capacity for (66% and 80%) on both bacteria respectively. The concentration of 2% glucose, on the other hand, led to a weak biofilm for 33% and 20% on both bacteria isolates respectively. In respect to the effect of sodium chloride, no isolate was able to form neither moderate nor strong biofilms. Nonetheless, all isolates succeeded in forming weak biofilms at 2% sodium chloride, while treatment with a concentration of 1% sodium chloride led to inhibited biofilm formation for 43% of isolates. Besides, Pseudomonas aeruginosa isolates were able to form moderate biofilms in the presence of 1% concentration of glucose, and weak producers in the presence of 2% glucose concentration. The isolates succeeded in forming strong biofilms at both 1% and 2% sodium chloride.
Copper oxide nanoparticles (CuO NPs) were synthesized by two methods. The first was chemical method by using copper nitrate Cu (NO3)2 and NaOH, while the second was green method by using Eucalyptus camaldulensis leaves extract and Cu (NO3)2. These methods easily give a large scale production of CuO nanoparticles. X-ray diffraction pattern (XRD) reveals single phase monoclinic structure. The average crystalline size of CuO NPs was measured and used by Scherrer equation which found 44.06nm from chemical method, while the average crystalline size was found from green method was 27.2nm. The morphology analysis using atomic force microscopy showed that the grain size for CuO NPs was synthesized by chemical and green methods were 77.70 and 89.24
... Show MorePseudomonas aeruginosa produces an extracellular bioï¬lm matrix that consists of nucleic acids, exopolysaccharides, lipid vesicles, and proteins. Alginate, Psl and Pel are three exopolysaccharides that constitute the main components in biofilm matrix, with many biological functions attributed to them, especially concerning the protection of the bacterial cell from antimicrobial agents and immune responses. A total of 25 gentamicin-resistant P. aeruginosa selected isolates were enrolled in this study. Biofilm development was observed in 96% of the isolates. In addition, the present results clarified the presence of pelA and pslA in all the studied isolates. The expression of these genes was very low. Even though all biof
... Show MoreFifteen local isolates of Pseudomonas were obtained from several sources such as soil, water and some high-fat foods (Meat, olives, coconuts, etc.). The ability of isolates to produce lipase was measured by the size of clear zone on Tween 20 solid medium and by measuring the enzymatic activity and specific activity. Isolate M3 (as named in this study) was found to be the most efficient for the production of the lipase with enzymatic activity reached 56.6 U/ml and specific activity of 305.94 U/mg. This isolate was identified through genetic analysis of the 16S rRNA gene. and it was shown that the isolate M3 belongs to Pseudomonas aeruginosa with 99% similarity. The DNA of isolate M3 was extracted and lipase gene was amplified through PCR tec
... Show MoreBiofilm formation is one of the biggest challenges of scientists. Role of heavy metals in forming biofilm is not clear enough. Here, the effect of lead on biofilm formation by Bacillus spp. isolated from soil in terms of biofilm formation and remove was studied. In present study, 10 isolates of Bacillus spp were isolated from soil. The ability of all isolates to form biofilm was evaluated. The effect of lead on biofilm formation was studied by adding lead (pb) before forming biofilm. In another experiment the lead was added after biofilm formation to study the effect of lead on biofilm remove. The current study, showed the ability of all studied isolates to form biofilm. Maximum biofilm formation by Bacillus spp isolate number 8 (B8) follow
... Show MoreThe aim of this study is to evaluating the antibacterial activity of Laurus nobilis leaves extract in hospital environment isolates. Maceration and Soxhlet apparatus were used to prepare aqueous and methanolic extracts. The total phenolic content and high-performance liquid chromatography (HPLC) were conducted to determine the active compounds in the extracts. The results showed that the methanolic and aqueous extracts contain four flavonoids derivatives (kaempferol, luteolin, quercetin and Rutin) were identified on the basis of matching retention time with the standards. The total phenolic contents were 56.81 and 81.56 mg/g in 50 mg/ml, in aqueous and methanolic extracts respectively. The antibacterial activity of Laurus nobilis leaves ext
... Show MorePseudomonas aeruginosa is the most common opportunistic pathogen causing morbidity and mortality in hospitalized patients due to its multiple resistance mechanisms. Therefore, as a therapeutic option becomes restricted, the search for a new agent is a preference. So P. aeruginosa is an extremely versatile Gram-negative bacterium capable of thriving in a broad spectrum of environments, and this performs main problems to workers in the field of health. One hundred and fifty samples were collected from different sources from Baghdad hospitals, divided into two main groups: clinical (100) specimens and (50) samples as an environmental, collected from October 2019 to the March 2020. All of these samples were cultured by specific and differential
... Show MoreIn this study, 158 clinical samples were collected from hospitalized burn patients during the period from December 2012 to June 2013 in Karbala province\ Iraq. Bacterial isolates were identified using conventional biochemical tests and then identification was confirmed by using Vitek-2 compact system. Pseudomonas aeruginosa recovery was 60 isolates in this study. These isolates were analyzed for antibiotic susceptibility by the disk diffusion test (DDT) according to Kirby Bauer's method using seven clinically important antipseudomonal agents: carbapenems (Imipenem and Meropenem), pencillins (Piperacillin), cephalosporins (Ceftazidim), monobactam (Aztreonam), quinolones (Ciprofloxacin) and aminoglycosides (Gentamicin). The results of resista
... Show More