In this paper, we study flow of photons rate production in a quark-gluon QG plasma. General theory of this study is based on the field theory for hard interaction. The kinetic of photons production from hard interaction in charm with anti-top to production photons with gluon due to plasma phase at high temperatures (150, 200,250,300 and 350 MeV) .It has been investigated and studied using the postulate of quantum chromodynamic theory QCD .The photons production rate of hard photons with( GeV) are insensitive to strength coupling and depend mainly on the temperature of system T . Despite the different critical temperature (150 and 190MeV) comes, we ï¬nd that same order of flow rate photons magnitude in both cases. In both cases, the flow rate of photons production in the QG plasmais increased with increased temperature of system and photons energy and decreases with increases the strength coupling strength.
Thermal performance of closed wet cooling tower has been investigated experimentally and theoretically
in this work. The theoretical model based on heat and mass transfer equations and heat and mass transfer balance equations which are established for steady state case. A new small indirect cooling tower was used for conducting experiments. The cooling capacity of cooling tower is 1 kW for an inlet water temperature of 38oC, a water mass velocity 2.3 kg/m2.s and an air wet bulb temperature of 26oC. This study investigates the relationship between saturation efficiency, cooling capacity and coefficient of performance of closed wet cooling tower versus different operating parameters such wet-bulb temperature, variable air-spray water fl
The present project involves photodegrading the dye solochrom violet under advanced oxidation techniques at (25 oC) temperature and UV light. Zinc Oxide (ZnO) and UV radiation at a wavelength of 580 nm were used to conduct the photocatalytic reaction of the solochrom violet dye. One of the factors looked into was the impact of the starting conditions. pH, the amount of original hydrogen peroxide, and the dye concentration time radiation were used. For hours, the kinetics and percentages of degradation were examined at various intervals. In general, it has been discovered that the photodegradation rates of the dye were greater when H2O2 and ZnO were combined with UV light. The best wavelength to use was determined. Modern oxidation techni
... Show MoreThe catalytic wet air oxidation (CWAO) of phenol has been studied in a trickle bed reactor
using active carbon prepared from date stones as catalyst by ferric and zinc chloride activation (FAC and ZAC). The activated carbons were characterized by measuring their surface area and adsorption capacity besides conventional properties, and then checked for CWAO using a trickle bed reactor operating at different conditions (i.e. pH, gas flow rate, LHSV, temperature and oxygen partial pressure). The results showed that the active carbon (FAC and ZAC), without any active metal supported, gives the highest phenol conversion. The reaction network proposed account
... Show MoreThe ground-state properties of exotic 18N and 20F nuclei, including the neutron, proton and matter densities and related radii are investigated using the two-body model of within Gaussian (GS) and Woods Saxon (WS) wave functions. The long tail is evident in the computed neutron and matter densities of these nuclei. The plane wave Born approximation (PWBA) is calculate the elastic form factors of these exotic nuclei. The variation in the proton density distributions due to the presence of the extra neutrons in 18N and 20F leads to a major difference between the elastic form factors of these exotic nuclei and their stable isotopes 14N and 19F. The reaction c
... Show MoreThe complexes of Pd+2 ion with 2-(5-bromo-2-pyridylazo)-5-dieıhyl aminophenol (BPADAP) were studied kinetically and spectrophotometrically in aqueous ethanolic solutions. The reagent forms 1:1, 2:1 square planer and 1:1 bridged shape binuclear complexes with Pd+2 ion. All these complexes (violet colour) absorb light in the same region at 540, 575 and 618nm. The band at 618 nm seems to be specific for complexes of Pd+2ion with BPADAP. The rate constants of the growth in 93% H2O + 7% ethanol of 1:1 and 2:1 complexes at 575 and 618 nm were followed the first order kinetics and are quite of the same values , 0.495 and 0.463 min- 1 respectively. The rate constants of the decay of 2:1 complex
... Show MoreNon thermal argon plasma needle at atmospheric pressure was generated. The experimental set up is based on very simple and low cost electric components that generate electrical field sufficiently high at the electrodes to ionize various gases, which flow at atmospheric pressure. The high d.c power supply is 7.5kV peak to peak, the frequency of the electrical field is 28kHz, and the plasma power less than 15W. The plasma is generated using only one electrode. In the present work the voltage and current discharge waveform are measured. Also the temperature of the working Ar gas at different gas flow and distances from the plasma electrode tip was recorded
Ytterbium-doped (Y2O3), (Sc2O3) and (YAG) crystals are very important for high-power thindisk lasers. These lasers have shown their ability to operate quasi-three-level materials with high
efficiency as well as high thermal conductivity ratio for crystalline hosts. All these reasons have
required studying this type of laser. In the present work, the analytical solution was found for the
equation of laser output power, pumping threshold power, and efficiency of a quasi-three-level
thin disk laser. The numerical solution of these equations was also found through the Matlab
program at the fundamental transverse mode, at a temperature of 299K0
and with high pumping
capabilities in order to know the e
In this study, a mathematical model for the kinetics of solute transport in liquid membrane systems (LMSs) has been formulated. This model merged the mechanisms of consecutive and reversible processes with a “semi-derived” diffusion expression, resulting in equations that describe solute concentrations in the three sections (donor, acceptor and membrane). These equations have been refined into linear forms, which are satisfying in the special conditions for simplification obtaining the important kinetic constants of the process experimentally.