Throughout this paper, we introduce the notion of weak essential F-submodules of F-modules as a generalization of weak essential submodules. Also we study the homomorphic image and inverse image of weak essential F-submodules.
Let R be a commutative ring with identity 1 and M be a unitary left R-module. A submodule N of an R-module M is said to be pure relative to submodule T of M (Simply T-pure) if for each ideal A of R, N?AM=AN+T?(N?AM). In this paper, the properties of the following concepts were studied: Pure essential submodules relative to submodule T of M (Simply T-pure essential),Pure closed submodules relative to submodule T of M (Simply T-pure closed) and relative pure complement submodule relative to submodule T of M (Simply T-pure complement) and T-purely extending. We prove that; Let M be a T-purely extending module and let N be a T-pure submodule of M. If M has the T-PIP, then N is T-purely extending.
The concept of fully pseudo stable Banach Algebra-module (Banach A-module) which is the generalization of fully stable Banach A-module has been introduced. In this paper we study some properties of fully stable Banach A-module and another characterization of fully pseudo stable Banach A-module has been given.
Abstract
The research was limited to those whom Imam Abu Dawood
described in his Sunan as weak, so this research does not include
narrators who carried descriptions indicating weakness such as
ignorance or others, nor does it include hadiths that the Imam
described as weak.
The number of narrators whom Imam Abu Dawood described as
weak has reached six narrators, and my methodology was to
mention the words of Imam Abu Dawood, then transfer the
sayings of other advanced scholars, as well as the sayings of
Imam Abu Dawood in his other books, if any, to show the extent
of compatibility between these sayings.
I have reached the following resul
... Show MoreIn this paper, we present the almost approximately nearly quasi compactly packed (submodules) modules as an application of the almost approximately nearly quasiprime submodule. We give some examples, remarks, and properties of this concept. Also, as the strong form of this concept, we introduce the strongly, almost approximately nearly quasi compactly packed (submodules) modules. Moreover, we present the definitions of almost approximately nearly quasiprime radical submodules and almost approximately nearly quasiprime radical submodules and give some basic properties of these concepts that will be needed in section four of this research. We study these two concepts extensively.
Warm dark matter (WDM) models offer an attractive alternative to the current cold dark matter (CDM) cosmological model. We present a novel method to differentiate between WDM and CDM cosmologies, namely, using weak lensing; this provides a unique probe as it is sensitive to all of the “matter in the beam,” not just dark matter haloes and the galaxies that reside in them, but also the diffuse material between haloes. We compare the weak lensing maps of CDM clusters to those in a WDM model corresponding to a thermally produced 0.5 keV dark matter particle. Our analysis clearly shows that the weak lensing magnification, convergence, and shear distributions can be used to distinguish
Suppose R has been an identity-preserving commutative ring, and suppose V has been a legitimate submodule of R-module W. A submodule V has been J-Prime Occasionally as well as occasionally based on what’s needed, it has been acceptable: x ∈ V + J(W) according to some of that r ∈ R, x ∈ W and J(W) an interpretation of the Jacobson radical of W, which x ∈ V or r ∈ [V: W] = {s ∈ R; sW ⊆ V}. To that end, we investigate the notion of J-Prime submodules and characterize some of the attributes of has been classification of submodules.
Let R be a commutative ring with unity and let M, N be unitary R-modules. In this research, we give generalizations for the concepts: weakly relative injectivity, relative tightness and weakly injectivity of modules. We call M weakly N-quasi-injective, if for each f  Hom(N,ï) there exists a submodule X of ï such that f (N) ïƒ X ≈ M, where ï is the quasi-injective hull of M. And we call M N-quasi-tight, if every quotient N / K of N which embeds in ï embeds in M. While we call M weakly quasi-injective if M is weakly N-quasiinjective for every finitely generated R-module N. Moreover, we generalize some properties of weakly N-injectiv
... Show More