In this paper, several types of space-time fractional partial differential equations has been solved by using most of special double linear integral transform â€double Sumudu â€. Also, we are going to argue the truth of these solutions by another analytically method “invariant subspace methodâ€. All results are illustrative numerically and graphically.
The variational iteration method is used to deal with linear and nonlinear differential equations. The main characteristics of the method lie in its flexibility and ability to accurately and easily solve nonlinear equations. In this work, a general framework is presented for a variational iteration method for the analytical treatment of partial differential equations in fluid mechanics. The Caputo sense is used to describe fractional derivatives. The time-fractional Kaup-Kupershmidt (KK) equation is investigated, as it is the solution of the system of partial differential equations via the Boussinesq-Burger equation. By comparing the results that are obtained by the variational iteration method with those obtained by the two-dim
... Show MoreStatin drugs act by inhibiting the enzyme HMG-CoA reductase which is responsible for manufacture of cholesterol and the biosynthesis essential energy production Co-factor (Coenzyme Q10). The aim from this research includes study the effect of statin drugs (Simvastatin and Atorvastatin) on the Coenzyme Q10 using differential pulse polarographic technique at a dropping mercury electrode (DME) and in a mixture of [4:1] methanol-phosphate buffer of pH7.0 as supporting an electrolyte. Prior to this, the behaviors of Simvastatin, Atorvastatin and Coenzyme Q10 were studied separately in their solvents. The half-wave potential (E1/2) of Co Q10 were -0.31volt and -1.37Volt, -1.33 Volt for simvastatin and atorvastatin respectively. A mixture of Co
... Show MoreThe time fractional order differential equations are fundamental tools that are used for modeling neuronal dynamics. These equations are obtained by substituting the time derivative of order where , in the standard equation with the Caputo fractional formula. In this paper, two implicit difference schemes: the linearly Euler implicit and the Crank-Nicolson (CN) finite difference schemes, are employed in solving a one-dimensional time-fractional semilinear equation with Dirichlet boundary conditions. Moreover, the consistency, stability and convergence of the proposed schemes are investigated. We prove that the IEM is unconditionally stable, while CNM is conditionally stable. Furthermore, a comparative study between these two s
... Show MoreThe denoising of a natural image corrupted by Gaussian noise is a problem in signal or image processing. Much work has been done in the field of wavelet thresholding but most of it was focused on statistical modeling of wavelet coefficients and the optimal choice of thresholds. This paper describes a new method for the suppression of noise in image by fusing the stationary wavelet denoising technique with adaptive wiener filter. The wiener filter is applied to the reconstructed image for the approximation coefficients only, while the thresholding technique is applied to the details coefficients of the transform, then get the final denoised image is obtained by combining the two results. The proposed method was applied by usin
... Show MoreAbstract
The logistic regression model is one of the nonlinear models that aims at obtaining highly efficient capabilities, It also the researcher an idea of the effect of the explanatory variable on the binary response variable. &nb
... Show More
Abstract
The Classical Normal Linear Regression Model Based on Several hypotheses, one of them is Heteroscedasticity as it is known that the wing of least squares method (OLS), under the existence of these two problems make the estimators, lose their desirable properties, in addition the statistical inference becomes unaccepted table. According that we put tow alternative, the first one is (Generalized Least Square) Which is denoted by (GLS), and the second alternative is to (Robust covariance matrix estimation) the estimated parameters method(OLS), and that the way (GLS) method neat and certified, if the capabilities (Efficient) and the statistical inference Thread on the basis of an acceptable
... Show MoreThis study concerns a new type of heat exchangers, which is that of shell-and-double concentric tube heat exchangers. The case studies include both design calculations and performance calculations.
The new heat exchanger design was conducted according to Kern method. The volumetric flow rates were 3.6 m3/h and 7.63 m3/h for the hot oil and water respectively. The experimental parameters studied were: temperature, flow rate of hot oil, flow rate of cold water and pressure drop.
A comparison was made for the theoretical and experimental results and it was found that the percentage error for the hot oil outlet temperature was (- 1.6%). The percentage
... Show MoreIn this paper, a method is proposed to increase the compression ratio for the color images by
dividing the image into non-overlapping blocks and applying different compression ratio for these
blocks depending on the importance information of the block. In the region that contain important
information the compression ratio is reduced to prevent loss of the information, while in the
smoothness region which has not important information, high compression ratio is used .The
proposed method shows better results when compared with classical methods(wavelet and DCT).
HIV is a leading cause of death, in particular, in Sub-Saharan Africa. In this paper, a fractional differential system in vivo deterministic models for HIV dynamics is presented and analyzed. The main roles played by different HIV treatment methods are investigated using fractional optimal control theory. We use three treatment regimens as system control variables to determine the best strategies for controlling the infection. The optimality system is numerically solved using the fractional Adams-Bashforth technique.
In this effort, we define a new class of fractional analytic functions containing functional parameters in the open unit disk. By employing this class, we introduce two types of fractional operators, differential and integral. The fractional differential operator is considered to be in the sense of Ruscheweyh differential operator, while the fractional integral operator is in the sense of Noor integral. The boundedness and compactness in a complex Banach space are discussed. Other studies are illustrated in the sequel.