In this paper, several types of space-time fractional partial differential equations has been solved by using most of special double linear integral transform â€double Sumudu â€. Also, we are going to argue the truth of these solutions by another analytically method “invariant subspace methodâ€. All results are illustrative numerically and graphically.
Drip irrigation is one of the conservative irrigation techniques since it implies supplying water directly on the soil through the emitter; it can supply water and fertilizer directly into the root zone. An equation to estimate the wetted area in unsaturated soil is taking into calculating the water absorption by roots is simulated numerically using HYDRUS (2D/3D) software. In this paper, HYDRUS comprises analytical types of the estimate of different soil hydraulic properties. Used one soil type, sandy loam, with three types of crops; (corn, tomato, and sweet sorghum), different drip discharge, different initial soil moisture content was assumed, and different time durations. The relative error for the different hydrauli
... Show MoreThis paper examines the finding of spacewise dependent heat source function in pseudoparabolic equation with initial and homogeneous Dirichlet boundary conditions, as well as the final time value / integral specification as additional conditions that ensure the uniqueness solvability of the inverse problem. However, the problem remains ill-posed because tiny perturbations in input data cause huge errors in outputs. Thus, we employ Tikhonov’s regularization method to restore this instability. In order to choose the best regularization parameter, we employ L-curve method. On the other hand, the direct (forward) problem is solved by a finite difference scheme while the inverse one is reformulated as an optimization problem. The
... Show Morethis work, a simple method was used to prepare the MnO2 nanoparticles. These nanoparticles then were characterized by several techniques, such as X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy (SEM) and atomic force microscope (AFM). The results showed that the diffraction peak of MnO2 nanoparticles was similar to that of standard data. The images of AFM and SEM indicated that the MnO2 nanorods were growing from the MnO2 nano spherical shape. PVA-pentaerythritol/MnO2 nanocomposite films were fabricated by evaporating casting method. The dielectric constant and loss tangent of P-Ery/MnO2 films were measured between 10 kHz and 1 MHz using LCR. As the content of MnO2 increased, the dielectric constant
... Show MoreThe aim of this study was to study chemical constituents of aerial parts of Cardaria draba since no phytochemical investigation had been studied before in Iraq. Aerial parts of Cardaria draba were defatted by maceration in hexane for 72 h. The defatted plant materials were extracted using Soxhlet apparatus, the aqueous Methanol 90% as a solvent extraction for 18 h, and fractionated with petroleum ether- chloroform (CHCl3)- ethylacetate- and n-butanol respectivly. The ethyl acetate, n-butanol, and n-butanol after hydrolysis fractions were investigated by high performance liquid chromatography (HPLC) and thin-layer chromatography (TLC) for its phenolic acid and flavonoid contents. Flavono
... Show MoreThis paper presents an alternative method for developing effective embedded optimized Runge-Kutta (RK) algorithms to solve oscillatory problems numerically. The embedded scheme approach has algebraic orders of 5 and 4. By transforming second-order ordinary differential equations (ODEs) into their first-order counterpart, the suggested approach solves first-order ODEs. The amplification error, phase-lag, and first derivative of the phase-lag are all nil in the embedded pair. The alternative method’s absolute stability is demonstrated. The numerical tests are conducted to demonstrate the effectiveness of the developed approach in comparison to other RK approaches. The alternative approach outperforms the current RK methods
... Show MoreOne of the main techniques to achieve phase behavior calculations of reservoir fluids is the equation of state. Soave - Redlich - Kwong equation of state can then be used to predict the phase behavior of the petroleum fluids by treating it as a multi-components system of pure and pseudo-components. The use of Soave – Redlich – Kwon equation of state is popular in the calculations of petroleum engineering therefore many researchers used it to perform phase behavior analysis for reservoir fluids (Wang and Orr (2000), Ertekin and Obut (2003), Hasan (2004) and Haghtalab (2011))
This paper presents a new flash model for reservoir fluids in gas – oil se
Purpose – The main purpose of this research is to highlight the main role of strategic leadership skills for top managements in accessing to effective management in accordance with the (VUCA Prime) methodology in (VUCA) environment as Miniature virtual environment, which refers to (Volatility), (Uncertainty), (Complexity), and (Ambiguity).
methodology – To achieve the research objective, this study selected the quantitative approach in research design, Questionnaire was used as the main instrument for data collection, the sample comprised the opinion poll (106) individual who functions as a head department. (Structural equation modelling by (Smart Pls3)
... Show MoreThe work in this paper focuses on solving numerically and analytically a nonlinear social epidemic model that represents an initial value problem of ordinary differential equations. A recent moking habit model from Spain is applied and studied here. The accuracy and convergence of the numerical and approximation results are investigated for various methods; for example, Adomian decomposition, variation iteration, Finite difference and Runge-Kutta. The discussion of the present results has been tabulated and graphed. Finally, the comparison between the analytic and numerical solutions from the period 2006-2009 has been obtained by absolute and difference measure error.
Nuclear medicine is important for both diagnosis and treatment. The most common treatment for diseases is radiation therapy used against cancer. The radiation intensity of the treatment is often less than its ability to cause damage, so radiation must be carefully controlled. The interactions of alpha particle with matter were studied and the stopping powers of alpha particle with ovary tissue were calculated using Beth-Bloch equation, Zeigler’s formula and SRIM Software also the range and Liner Energy Transfer (LET) and ovary thickness as well as dose and dose equivalent for this particle were calculated by using Matlab language for (0.01-200) MeV alpha energy.
This paper deals with numerical approximations of a one-dimensional semilinear parabolic equation with a gradient term. Firstly, we derive the semidiscrete problem of the considered problem and discuss its convergence and blow-up properties. Secondly, we propose both Euler explicit and implicit finite differences methods with a non-fixed time-stepping procedure to estimate the numerical blow-up time of the considered problem. Finally, two numerical experiments are given to illustrate the efficiency, accuracy, and numerical order of convergence of the proposed schemes.