In this paper, the continuous classical boundary optimal control problem (CCBOCP) for triple linear partial differential equations of parabolic type (TLPDEPAR) with initial and boundary conditions (ICs & BCs) is studied. The Galerkin method (GM) is used to prove the existence and uniqueness theorem of the state vector solution (SVS) for given continuous classical boundary control vector (CCBCV). The proof of the existence theorem of a continuous classical boundary optimal control vector (CCBOCV) associated with the TLPDEPAR is proved. The derivation of the Fréchet derivative (FrD) for the cost function (CoF) is obtained. At the end, the theorem of the necessary conditions for optimality (NCsThOP) of this problem is stated and proved.
Seawater might serve as a fresh‐water supply for future generations to help meet the growing need for clean drinking water. Desalination and waste management using newer and more energy intensive processes are not viable options in the long term. Thus, an integrated and sustainable strategy is required to accomplish cost‐effective desalination via wastewater treatment. A microbial desalination cell (MDC) is a new technology that can treat wastewater, desalinate saltwater, and produce green energy simultaneously. Bio‐electrochemical oxidation of wastewater organics creates power using this method. Desalination and the creation of value‐added by‐products are expected because of this ionic mov
This article aims to estimate the partially linear model by using two methods, which are the Wavelet and Kernel Smoothers. Simulation experiments are used to study the small sample behavior depending on different functions, sample sizes, and variances. Results explained that the wavelet smoother is the best depending on the mean average squares error criterion for all cases that used.
الوصف In this time, most researchers toward about preparation of compounds according to green chemistry. This research describes the preparation of 2-fluoro-5-(substituted benzylideneamino) benzonitrile under reflux and microwave methods. Six azomethine compounds (B1-6) were synthesized by two methods under reflux and assisted microwave with the comparison between the two methods. Reflux method was prepared of azomethine (B1-6) by reaction of 5-amino-2-fluorobenzonitrile with some aldehyde derivatives with (50–100) mL of absolute ethanol and some quantity of GAA and time is limited between (2–5) hours with a yield between (60–70) percent with recrystallization for appropriate solvents. But the microwave-assisted method was synthe
... Show MoreIn this paper, a new technique is offered for solving three types of linear integral equations of the 2nd kind including Volterra-Fredholm integral equations (LVFIE) (as a general case), Volterra integral equations (LVIE) and Fredholm integral equations (LFIE) (as special cases). The new technique depends on approximating the solution to a polynomial of degree and therefore reducing the problem to a linear programming problem(LPP), which will be solved to find the approximate solution of LVFIE. Moreover, quadrature methods including trapezoidal rule (TR), Simpson 1/3 rule (SR), Boole rule (BR), and Romberg integration formula (RI) are used to approximate the integrals that exist in LVFIE. Also, a comparison between those
... Show MoreThe idea of the paper is to consolidate Mahgoub transform and variational iteration method (MTVIM) to solve fractional delay differential equations (FDDEs). The fractional derivative was in Caputo sense. The convergences of approximate solutions to exact solution were quick. The MTVIM is characterized by ease of application in various problems and is capable of simplifying the size of computational operations. Several non-linear (FDDEs) were analytically solved as illustrative examples and the results were compared numerically. The results for accentuating the efficiency, performance, and activity of suggested method were shown by comparisons with Adomian Decomposition Method (ADM), Laplace Adomian Decompos
... Show MoreOscillation criterion is investigated for all solutions of the first-order linear neutral differential equations with positive and negative coefficients. Some sufficient conditions are established so that every solution of eq.(1.1) oscillate. Generalizing of some results in [4] and [5] are given. Examples are given to illustrated our main results.
In this paper, we conduct some qualitative analysis that involves the global asymptotic stability (GAS) of the Neutral Differential Equation (NDE) with variable delay, by using Banach contraction mapping theorem, to give some necessary conditions to achieve the GAS of the zero solution.