In this research, our aim is to study the optimal control problem (OCP) for triple nonlinear elliptic boundary value problem (TNLEBVP). The Mint-Browder theorem is used to prove the existence and uniqueness theorem of the solution of the state vector for fixed control vector. The existence theorem for the triple continuous classical optimal control vector (TCCOCV) related to the TNLEBVP is also proved. After studying the existence of a unique solution for the triple adjoint equations (TAEqs) related to the triple of the state equations, we derive The Fréchet derivative (FD) of the cost function using Hamiltonian function. Then the theorems of necessity conditions and the sufficient condition for optimality of the constraints problem are proved
It is known that life is as series of variety of difficult problems that individual looks
forward to overcome so as to achieve adaptation and to reach the desired aims .The transition
of the students from the school stage to the stage of the university is actually regarded a
dramatic change where students face when they enter university life that differs from what
they lived in secondary school.
The executive functions are considered the main element that participate in solving the
problems of high orders , because it involves the mental abilities that assist individual to
think and initiative as well as solving problems .
These functions include operational planning and the activated memory and inhibition of
q
Heuristic Program proposal for the treatment of talented emotional and Cognitive problems .
1-The Curtent research aims : to identify the needs of gifted students and their problems and Ways to diagnose .
2-reprepare aproposal heuristic program for the treatment of emotional and Cognitive talented problems .
Research . Methodology : analytical and descriptive .
Define the terms
Virt uoso is the per for mance of the privileged Mstmrave performances appear in any area of his Values .
Chapter ll : Includes recipes gifted child and Methods diagnosis gifted by filtrontion and standavds of personal and mental and behavioral Doramwaliman and parental Features and Leader in the detection of the gif
... Show MoreThe current research seeks to identify the most important humanitarian issues of a sacred and very important group in all the heavenly religions and human societies, namely the elderly, to identify their significant problems and health problems, and What are the effects of these problems on their mental health and which is the ultimate goal of human resources in All parts of the world? The study relied on what is available from the sources in the literature starting from the messages of heaven and the Islamic religion followed with humanitarian, social, legal and psychological postulates. The research included four systematic chapters included the definition research and identification of the problem, importance, objectives and terminolo
... Show MoreSports marketing is one of the most important areas to attract capital and the most important economic activities at the present time and the sports field is one of the most important areas that can be used in marketing products and services and the need for sports marketing in Iraq is shown to increase the benefits and returns of sports clubs due to a lack of material resource and weakness In the available capabilities presented to it. The research problem was the lack of sufficient knowledge of the role of sports marketing in the value of the customer by members of the administrative body of Iraqi sports clubs. The research aims to know the role of sports marketing in the value of the customer in the Iraqi Premier League clubs.
... Show MoreNitrogen (N) and phosphorus (P) are the most important nutrients for crop production. The N contributes to the structural component, generic, and metabolic compounds in a plant cell. N is mainly an essential part of chlorophyll, the compound in the plants that is responsible for photosynthesis process. The plant can get its available nitrogen from the soil by mineralizing organic materials, fixed-N by bacteria, and nitrogen can be released from plant as residue decay. Soil minerals do not release an enough amount of nitrogen to support plant; therefore, fertilizing is necessary for high production. Phosphorous contributes in the complex of the nucleic acid structure of plants. The nucleic acid is essential in protein synthesis regulation; t
... Show MoreThe deployment of UAVs is one of the key challenges in UAV-based communications while using UAVs for IoT applications. In this article, a new scheme for energy efficient data collection with a deadline time for the Internet of things (IoT) using the Unmanned Aerial Vehicles (UAV) is presented. We provided a new data collection method, which was set to collect IoT node data by providing an efficient deployment and mobility of multiple UAV, used to collect data from ground internet of things devices in a given deadline time. In the proposed method, data collection was done with minimum energy consumption of IoTs as well as UAVs. In order to find an optimal solution to this problem, we will first provide a mixed integer linear programming m
... Show MoreIn this paper we introduce a new type of functions called the generalized regular
continuous functions .These functions are weaker than regular continuous functions and
stronger than regular generalized continuous functions. Also, we study some
characterizations and basic properties of generalized regular continuous functions .Moreover
we study another types of generalized regular continuous functions and study the relation
among them
Study of determining the optimal future field development has been done in a sector of South Rumaila oil field/ main pay. The aspects of net present value (economic evaluation) as objective function have been adopted in the present study.
Many different future prediction cases have been studied to determine the optimal production future scenario. The first future scenario was without water injection and the second and third with 7500 surface bbls/day and 15000 surface bbls/day water injection per well, respectively. At the beginning, the runs have been made to 2028 years, the results showed that the optimal future scenario is continuing without water in
In this article, the lattice Boltzmann method with two relaxation time (TRT) for the D2Q9 model is used to investigate numerical results for 2D flow. The problem is performed to show the dissipation of the kinetic energy rate and its relationship with the enstrophy growth for 2D dipole wall collision. The investigation is carried out for normal collision and oblique incidents at an angle of . We prove the accuracy of moment -based boundary conditions with slip and Navier-Maxwell slip conditions to simulate this flow. These conditions are under the effect of Burnett-order stress conditions that are consistent with the discrete Boltzmann equation. Stable results are found by using this kind of boundary condition where d
... Show More