Saccharin is firstly synthesized in 1879. It is a very well-known as an inexpensive substitute for sugar as it is a non-caloric sweetener. The article shows the properties, use, metabolism and various synthesis and reactions of saccharine. Moreover, the toxicological reports explain that saccharin is mostly responsible for the bladder tumors observed in the male rats, the relationship between the consumption of saccharin and bladder cancer is afforded by epidemiological studies. The benefit-risk evaluation for saccharin is hardly to indicate. Saccharin is a sugar substitute, frequently used either in food industry, or in pharmaceutical formulations and even in tobacco products. The chemistry of saccharin is interesting because of it suspected carcinogenous character and the possible use as an antidote for metal poisoning. It appears prudent to evaluate their main properties and applications further.
The complexes of Schiff base (6-[Hydroxy - benzylidene)-amino]-pyrimidine-2,4-diol ) (L) with Mn(II), Fe(II), Co(II) and Ni(II) were prepared. The Schiff base and complexes have been characterized by FT-IR, 1H-NMR, UV-Vis, LC-mass spectra, magnetic moment, elemental microanalyses (C.H.N.), chloride containing, atomic absorption and molar conductance.
The Schiff base, metal salts and complexes were also screened for their bioactivity such as antibacterial and antifungal.
The compound 3-[4Ì„-(4Ë-methoxy benzoyloxy) benzylideneamino]-2-thioxo-imidazolidine-4-one [III] was prepared from the cyclization of thiosemicarbazone [II] with
ethyl α -chloroacetate in the presence of fused sodium acetate. Treatment the later compound
with acetic anhydride yielded the corresponding 1-Acetyl-3-[ 4Ì„- (4Ë- methoxy benzoyloxy)
benzylideneamino] – 2 – thioxo -imidazolidine-4-one [IV]. 1,3-Oxazepine derivatives [V]a-d
and [VI]a-d are obtained from the reaction of compounds[III] and [IV] with different acid
anhydrides, in dry benzene. The FTIR and
1
HNMR spectroscopy are indicated a good
evidence for the formation of the synthesized compounds. Some of the synthesized
This work involves synthesis of novel Schiff bases derivatives contining isoxazoline or pyrazoline units starting with chalcons . 4-Aminoacetophenone was reacted with 3-nitrobenzaldehyde in basic medium giving chalcone [I] by claisen-schemidt reaction. The chalcone [I] was reacted with hydroxylamine hydrochloride giving isoxazoline [II] in basic medium. The chalcone [I] could also react with hydrazitne hydrate to give pyrazoline [III] . The novel Schiff bases with structural formula [IV] and [V] were prepared by the reaction of amino compounds ; isoxazoline [II] and pyrazolines [III] with p-substituted aldehydes or p-subsituted ketones, respectively in dry benzene using drops of glacial acetic acid as a cat
... Show MoreSeveral new derivatives of 1, 2, 4-triazoles linked to phthalimide moiety were synthesized through following multisteps. The first step involved preparation of 2, 2-diphthalimidyl ethanoic acid [2] via reaction of two moles of phthalimide with dichloroacetic acid. Treatment of the resulted imide with ethanol in the second step afforded 2, 2-diphthalimidyl ester [3] which inturn was introduced in reaction with hydrazine hydrate in the third step, producing the corresponding hydrazide derivative [4]. The synthesized hydazide was introduced in different synthetic paths including treatment with carbon disulfide in alkaline solution then with hydrazine hydrate to afford the new 1, 2, 4-triazole [10]. Reaction of compound [10] with different alde
... Show MoreIn this research two series of the new derivatives of Trimethoprim and paracetamol drugs have been prepared which known as a high medicinal effectiveness. Series (A) is including the interaction of diazonium salt of trimethoprim and coupling with some substituted phenol compounds (2-amino phenol, 3-ethyl phenol, 1-naphthol, 2-nitro phenol, Salbutamol). Series (B) is including the interaction coupling alkali solution of paracetamol with diazonium salt of some substituted aniline compounds (Benzedine, 2, 3-di chloro aniline, Trimethoprim, Anilinium chloride, 2-nitro- 4-chloro aniline).Chemical structures of all synthesized compounds were confirmed by UV-visible and FTIR spectroscopy.
In this study, chalcones were synthesis by condensing 2-acetylpyridine with aromatic aldehyde derivatives in dilute ethanolic potassium hydroxide solution at room temperature according to Claisen-Schmidt condensation. After that, new heterocyclic derivatives such as Oxazine, Thiazine and Pyrazol were synthesis by reaction between chalcones with urea, thiourea and hydrazine hydrate respectively scheme 1. All these compounds wrer characterization by FTIR, 1H-NMR spectroscopy and elemental analysis.
The new symmetry pyromellitdiimide [VII]a-c,n were synthesized by two-step reactions from the corresponding pyromellitic dianhydride . A new symmetrical amic acid [VI]a-c,n was synthesized by the reaction of pyromellitic dianhydride with different heterocyclic amines in dry acetone . The second reaction step includes intramolecular cyclization of amic acid in the presence of sodium acetate -acetic anhydride system at 850C. Structures of the synthesized compounds have been ascertained by their melting points , C.H.N analysis , UV-Vis, FTIR and 1HNMR spectroscopy.
Seawater might serve as a fresh‐water supply for future generations to help meet the growing need for clean drinking water. Desalination and waste management using newer and more energy intensive processes are not viable options in the long term. Thus, an integrated and sustainable strategy is required to accomplish cost‐effective desalination via wastewater treatment. A microbial desalination cell (MDC) is a new technology that can treat wastewater, desalinate saltwater, and produce green energy simultaneously. Bio‐electrochemical oxidation of wastewater organics creates power using this method. Desalination and the creation of value‐added by‐products are expected because of this ionic mov