Financial fraud remains an ever-increasing problem in the financial industry with numerous consequences. The detection of fraudulent online transactions via credit cards has always been done using data mining (DM) techniques. However, fraud detection on credit card transactions (CCTs), which on its own, is a DM problem, has become a serious challenge because of two major reasons, (i) the frequent changes in the pattern of normal and fraudulent online activities, and (ii) the skewed nature of credit card fraud datasets. The detection of fraudulent CCTs mainly depends on the data sampling approach. This paper proposes a combined SVM- MPSO-MMPSO technique for credit card fraud detection. The dataset of CCTs which consists of 284,807 transactions performed by European cardholders in 2013 was used in this study. The proposed technique was applied to both the raw dataset and the pre-processed dataset. The performance of these techniques is evaluated based on accuracy, and the fastest time it takes to detect fraud. This paper, proposed a technique that uses SVM, MPSO and MMPSO to form an ensemble for the detection of credit card fraud
Today’s modern medical imaging research faces the challenge of detecting brain tumor through Magnetic Resonance Images (MRI). Normally, to produce images of soft tissue of human body, MRI images are used by experts. It is used for analysis of human organs to replace surgery. For brain tumor detection, image segmentation is required. For this purpose, the brain is partitioned into two distinct regions. This is considered to be one of the most important but difficult part of the process of detecting brain tumor. Hence, it is highly necessary that segmentation of the MRI images must be done accurately before asking the computer to do the exact diagnosis. Earlier, a variety of algorithms were developed for segmentation of MRI images by usin
... Show MoreRegarding to the computer system security, the intrusion detection systems are fundamental components for discriminating attacks at the early stage. They monitor and analyze network traffics, looking for abnormal behaviors or attack signatures to detect intrusions in early time. However, many challenges arise while developing flexible and efficient network intrusion detection system (NIDS) for unforeseen attacks with high detection rate. In this paper, deep neural network (DNN) approach was proposed for anomaly detection NIDS. Dropout is the regularized technique used with DNN model to reduce the overfitting. The experimental results applied on NSL_KDD dataset. SoftMax output layer has been used with cross entropy loss funct
... Show MoreThe cuneiform images need many processes in order to know their contents
and by using image enhancement to clarify the objects (symbols) founded in the
image. The Vector used for classifying the symbol called symbol structural vector
(SSV) it which is build from the information wedges in the symbol.
The experimental tests show insome numbersand various relevancy including
various drawings in online method. The results are high accuracy in this research,
and methods and algorithms programmed using a visual basic 6.0. In this research
more than one method was applied to extract information from the digital images
of cuneiform tablets, in order to identify most of signs of Sumerian cuneiform.
Shadow removal is crucial for robot and machine vision as the accuracy of object detection is greatly influenced by the uncertainty and ambiguity of the visual scene. In this paper, we introduce a new algorithm for shadow detection and removal based on different shapes, orientations, and spatial extents of Gaussian equations. Here, the contrast information of the visual scene is utilized for shadow detection and removal through five consecutive processing stages. In the first stage, contrast filtering is performed to obtain the contrast information of the image. The second stage involves a normalization process that suppresses noise and generates a balanced intensity at a specific position compared to the neighboring intensit
... Show MoreHuman cytomegalovirus (HCMV) infection is ubiquitous and successfully reactivated in patients with immune dysfunction as in patient with multiple myeloma (MM), causing a wide range of life-threatening diseases. Early detection of HCMV and significant advances in MM management has amended patient outcomes and prolonged survival rates.
The aim of the study was to estimate the frequency of active HCMV in MM patients.
This is a case–control study involved 50 MM patients attending Hematology Center, Bag
Photoacoustic is a unique imaging method that combines the absorption contrast of light or radio frequency waves with ultrasound resolution. When the deposition of this energy is sufficiently short, a thermo-elastic expansion takes place whereby acoustic waves are generated. These waves can be recorded and stored to construct an image. This work presents experimental procedure of laser photoacoustic two dimensional imaging to detect tumor embedded within normal tissue. The experimental work is accomplished using phantoms that are sandwiched from fish heart or blood sac (simulating a tumor) 1-14mm mean diameter embedded within chicken breast to simulate a real tissue. Nd: YAG laser of 1.064μm and 532nm wavelengths, 10ns pulse duration, 4
... Show MoreBackground: Sprite coding is a very effective technique for clarifying the background video object. The sprite generation is an open issue because of the foreground objects which prevent the precision of camera motion estimation and blurs the created sprite. Objective: In this paper, a quick and basic static method for sprite area detection in video data is presented. Two statistical methods are applied; the mean and standard deviation of every pixel (over all group of video frame) to determine whether the pixel is a piece of the selected static sprite range or not. A binary map array is built for demonstrating the allocated sprite (as 1) while the non-sprite (as 0) pixels valued. Likewise, holes and gaps filling strategy was utilized to re
... Show MoreThe present study aimed to try to find natural substances stimulate the production of bacteriocin, as well as "for detection of bacteriocin producing isolates. Two hundred and eighty ( 280) bacterial isolates, gram negative only, were collected from 760 different pathogenic samples, consist: (Urinary tract infection, septicemia, Vaginal inflammation and diarrhea). The isolated bacteria are: Escherichia coli, Klebsiella pneumonia Pseudomonas aeruginosa,, Salmonella typhi, Enterobacter cloacae, Acinetobacter baumannii, Serratia liquefaciens, Citrobacter freundii, Proteus mirabilis and Serrattia odorifera. Cup assay method was used to detect bacteriocin production. Loc
... Show More