This paper deals with the continuous classical optimal control problem for triple partial differential equations of parabolic type with initial and boundary conditions; the Galerkin method is used to prove the existence and uniqueness theorem of the state vector solution for given continuous classical control vector. The proof of the existence theorem of a continuous classical optimal control vector associated with the triple linear partial differential equations of parabolic type is given. The derivation of the Fréchet derivative for the cost function is obtained. At the end, the theorem of the necessary conditions for optimality of this problem is stated and is proved.
This research deals with the design and simulation of a solar power system consisting of a KC200GT solar panel, a closed loop boost converter and a three phase inverter by using Matlab / Simulink. The mathematical equations of the solar panel design are presented. The electrical characteristics of the panel are tested at the values of 1000 for light radiation and 25 °C for temperature environment. The Proportional Integral (PI) controller is connected as feedback with the Boost converter to obtain a stable output voltage by reducing the oscillations in the voltage to charge a battery connected to the output of the converter. Two methods (Particle Swarm Optimization (PSO) and Zeigler- Nichols) are used for tuning
... Show MoreThis paper proposed to build an authentication system between business partners on e-commerce application to prevent the frauds operations based on visual cryptography shares encapsulated by chen’s hyperchaotic key sequence. The proposed system consist of three phases, the first phase based on the color visual cryptography without complex computations, the second phase included generate sequence of DNA rules numbers and finally encapsulation phase is implemented based on use the unique initial value that generate in second phase as initial condition with Piecewise Linear Chaotic Maps to generate sequences of DNA rules numbers. The experimental results demonstrate the proposed able to overcome on cheating a
... Show MoreThe limitations of wireless sensor nodes are power, computational capabilities, and memory. This paper suggests a method to reduce the power consumption by a sensor node. This work is based on the analogy of the routing problem to distribute an electrical field in a physical media with a given density of charges. From this analogy a set of partial differential equations (Poisson's equation) is obtained. A finite difference method is utilized to solve this set numerically. Then a parallel implementation is presented. The parallel implementation is based on domain decomposition, where the original calculation domain is decomposed into several blocks, each of which given to a processing element. All nodes then execute computations in parall
... Show MoreThe inhibitive action of polyvinyl alcohol –sodium nitrite (PVASN) composite on the corrosion of mild steel in simulated cooling water (SCW) has been investigated by weight loss and potentiodynamic polarization. The effect of composite concentration (PVA/SN) , pH, and exposure time on corrosion rate of mild steel were verified using 2 levels factorial design and surface response analysis through weight loss approach, while the electrochemical measurements were used to study the behavior of mild steel in (SCW) with pH between 6 and 8 and in absence and presence of (PVA) in solution containing different concentration of NaNO2. It was verified that all three main variables studied were statistically significant while their interaction is
... Show MoreThe main aim of this research paper is investigating the effectiveness and validity of Meso-Scale Approach (MSA) as a modern technique for the modeling of plain concrete beams. Simply supported plain concrete beam was subjected to two-point loading to detect the response in flexural. Experimentally, a concrete mix was designed and prepared to produce three similar standard concrete prisms for flexural testing. The coarse aggregate used in this mix was crushed aggregate. Numerical Finite Element Analysis (FEA) was conducted on the same concrete beam using the meso-scale modeling. The numerical model was constructed to be a bi-phasic material consisting of cement mortar and coarse aggregate. The interface between the two c
... Show MoreThis paper is devoted to the study of the peristaltic transport of viscoelastic non-Newtonian fluids with fractional Maxwell model in an inclined channel. Approximate analytical solutions have been constructed using Adomain decomposition method under the assumption of long wave boundary layer type approximation and low Reynolds number. The effect of each of relaxation time, fractional parameters, Reynolds number, Froude number, inclination of channel and amplitude on the pressure difference, friction force and stream function along one wavelength are received and analyzed.
The goal of this study is to provide a new explicit iterative process method approach for solving maximal monotone(M.M )operators in Hilbert spaces utilizing a finite family of different types of mappings as( nonexpansive mappings,resolvent mappings and projection mappings. The findings given in this research strengthen and extend key previous findings in the literature. Then, utilizing various structural conditions in Hilbert space and variational inequality problems, we examine the strong convergence to nearest point projection for these explicit iterative process methods Under the presence of two important conditions for convergence, namely closure and convexity. The findings reported in this research strengthen and extend
... Show MoreThe aim of this article is to present the exact analytical solution for models as system of (2+1) dimensional PDEs by using a reliable manner based on combined LA-transform with decomposition technique and the results have shown a high-precision, smooth and speed convergence to the exact solution compared with other classic methods. The suggested approach does not need any discretization of the domain or presents assumptions or neglect for a small parameter in the problem and does not need to convert the nonlinear terms into linear ones. The convergence of series solution has been shown with two illustrated examples such (2+1)D- Burger's system and (2+1)D- Boiti-Leon-Pempinelli (BLP) system.
Image segmentation is a basic image processing technique that is primarily used for finding segments that form the entire image. These segments can be then utilized in discriminative feature extraction, image retrieval, and pattern recognition. Clustering and region growing techniques are the commonly used image segmentation methods. K-Means is a heavily used clustering technique due to its simplicity and low computational cost. However, K-Means results depend on the initial centres’ values which are selected randomly, which leads to inconsistency in the image segmentation results. In addition, the quality of the isolated regions depends on the homogeneity of the resulted segments. In this paper, an improved K-Means
... Show MoreIn present work examined the oxidation desulfurization in batch system for model fuels with 2250 ppm sulfur content using air as the oxidant and ZnO/AC composite prepared by thermal co-precipitation method. Different factors were studied such as composite loading 1, 1.5 and 2.5 g, temperature 25 oC, 30 oC and 40 oC and reaction time 30, 45 and 60 minutes. The optimum condition is obtained by using Tauguchi experiential design for oxidation desulfurization of model fuel. the highest percent sulfur removal is about 33 at optimum conditions. The kinetic and effect of internal mass transfer were studied for oxidation desulfurization of model fuel, also an empirical kinetic model was calculated for model fuels
... Show More