Recently, digital communication has become a critical necessity and so the Internet has become the most used medium and most efficient for digital communication. At the same time, data transmitted through the Internet are becoming more vulnerable. Therefore, the issue of maintaining secrecy of data is very important, especially if the data is personal or confidential. Steganography has provided a reliable method for solving such problems. Steganography is an effective technique in secret communication in digital worlds where data sharing and transfer is increasing through the Internet, emails and other ways. The main challenges of steganography methods are the undetectability and the imperceptibility of confidential data. This paper presents a steganography method in frequency domain. Haar Wavelet Transform is applied for decomposition of gray level cover image into four sub-bands. The secret image is hidden in the high frequency HH sub-band after applying the histogram modification followed by scrambling process. A Histogram modification is adopted, to scale the secret image to normalize its values, that manipulates the secret image from bright image to dark. Thus the secret image becomes invisible so it can be hidden in the high frequency sub-band. Scrambling the positions can be for rows then columns, which will give strong security of the hiding process. The experimental results demonstrate the proposed method has achieved superior performance in terms of quantifiable measurement (PSNR and correlation) and in terms of visual quality. The proposed method propositions good imperceptible results and good response for against the various image attacks.
The production of fission products during reactor operation has a very important effect on reactor reactivity .Results of neutron cross section evaluations are presented for the main product nuclides considered as being the most important for reactor calculation and burn-up consideration . Data from the main international libraries considered as containing the most up-to-date nuclear data and the latest experimental measurements are considered in the evaluation processes, we describe the evaluated cross sections of the fission product nuclides by making inter comparison of the data and point out the discrepancies among libraries.
ANN modeling is used here to predict missing monthly precipitation data in one station of the eight weather stations network in Sulaimani Governorate. Eight models were developed, one for each station as for prediction. The accuracy of prediction obtain is excellent with correlation coefficients between the predicted and the measured values of monthly precipitation ranged from (90% to 97.2%). The eight ANN models are found after many trials for each station and those with the highest correlation coefficient were selected. All the ANN models are found to have a hyperbolic tangent and identity activation functions for the hidden and output layers respectively, with learning rate of (0.4) and momentum term of (0.9), but with different data
... Show MoreMany of the key stream generators which are used in practice are LFSR-based in the sense that they produce the key stream according to a rule y = C(L(x)), where L(x) denotes an internal linear bit stream, produced by small number of parallel linear feedback shift registers (LFSRs), and C denotes some nonlinear compression function. In this paper we combine between the output sequences from the linear feedback shift registers with the sequences out from non linear key generator to get the final very strong key sequence
The aim of this paper is adopted to give an approximate solution for advection dispersion equation of time fractional order derivative by using the Chebyshev wavelets-Galerkin Method . The Chebyshev wavelet and Galerkin method properties are presented. This technique is used to convert the problem into the solution of linear algebraic equations. The fractional derivatives are described based on the Caputo sense. Illustrative examples are included to demonstrate the validity and applicability of the proposed technique.
Through recent years many researchers have developed methods to estimate the self-similarity and long memory parameter that is best known as the Hurst parameter. In this paper, we set a comparison between nine different methods. Most of them use the deviations slope to find an estimate for the Hurst parameter like Rescaled range (R/S), Aggregate Variance (AV), and Absolute moments (AM), and some depend on filtration technique like Discrete Variations (DV), Variance versus level using wavelets (VVL) and Second-order discrete derivative using wavelets (SODDW) were the comparison set by a simulation study to find the most efficient method through MASE. The results of simulation experiments were shown that the performance of the meth
... Show MoreThe aim of this study was to study chemical constituents of aerial parts of Cardaria draba since no phytochemical investigation had been studied before in Iraq. Aerial parts of Cardaria draba were defatted by maceration in hexane for 72 h. The defatted plant materials were extracted using Soxhlet apparatus, the aqueous Methanol 90% as a solvent extraction for 18 h, and fractionated with petroleum ether- chloroform (CHCl3)- ethylacetate- and n-butanol respectivly. The ethyl acetate, n-butanol, and n-butanol after hydrolysis fractions were investigated by high performance liquid chromatography (HPLC) and thin-layer chromatography (TLC) for its phenolic acid and flavonoid contents. Flavono
... Show MoreUnconfined compressive strength (UCS) of rock is the most critical geomechanical property widely used as input parameters for designing fractures, analyzing wellbore stability, drilling programming and carrying out various petroleum engineering projects. The USC regulates rock deformation by measuring its strength and load-bearing capacity. The determination of UCS in the laboratory is a time-consuming and costly process. The current study aims to develop empirical equations to predict UCS using regression analysis by JMP software for the Khasib Formation in the Buzurgan oil fields, in southeastern Iraq using well-log data. The proposed equation accuracy was tested using the coefficient of determination (R²), the average absolute
... Show MoreThis paper proposed a new method to study functional non-parametric regression data analysis with conditional expectation in the case that the covariates are functional and the Principal Component Analysis was utilized to de-correlate the multivariate response variables. It utilized the formula of the Nadaraya Watson estimator (K-Nearest Neighbour (KNN)) for prediction with different types of the semi-metrics, (which are based on Second Derivative and Functional Principal Component Analysis (FPCA)) for measureing the closeness between curves. Root Mean Square Errors is used for the implementation of this model which is then compared to the independent response method. R program is used for analysing data. Then, when the cov
... Show MoreEvaluation study was conducted for seismic interpretation using two-dimensional seismic data for Subba oil field, which is located in the southern Iraq. The Subba oil field was discovered in 1973 through the results of the seismic surveys and the digging of the first exploratory well SU-1 in 1975 to the south of the Subba oil field. The entire length of the field is 35 km and its width is about 10 km. The Subba oil field contains 15 wells most of them distributed in the central of the field.
This study is dealing with the field data and how to process it for the purpose of interpretation; the processes included conversion of field data format, compensation of lost data and noise disposal, as well as the a
... Show MoreObjective This research investigates Breast Cancer real data for Iraqi women, these data are acquired manually from several Iraqi Hospitals of early detection for Breast Cancer. Data mining techniques are used to discover the hidden knowledge, unexpected patterns, and new rules from the dataset, which implies a large number of attributes. Methods Data mining techniques manipulate the redundant or simply irrelevant attributes to discover interesting patterns. However, the dataset is processed via Weka (The Waikato Environment for Knowledge Analysis) platform. The OneR technique is used as a machine learning classifier to evaluate the attribute worthy according to the class value. Results The evaluation is performed using
... Show More