When soft tissue planning is important, usually, the Magnetic Resonance Imaging (MRI) is a medical imaging technique of selection. In this work, we show a modern method for automated diagnosis depending on a magnetic resonance images classification of the MRI. The presented technique has two main stages; features extraction and classification. We obtained the features corresponding to MRI images implementing Discrete Wavelet Transformation (DWT), inverse and forward, and textural properties, like rotation invariant texture features based on Gabor filtering, and evaluate the meaning of every property in the classification. The classifier is according to Feed Forward Back Propagation Artificial Neural Network (FP-ANN) in the classification stage. The properties thereafter derived to be implemented to teach a neural network based binary classifier that will be automatically able to conclude whether the image is that of a pathological, suffering from brain lesion, or a normal brain. The proposed algorithm obtained the sensitivity of 97.50%, specificity of 82.86% and accuracy of 94.3% for clinical Brain MRI database. This outcome proofs that the presented algorithm is robust and effective compared with other recent techniques.
A random laser is a non-conventional laser whose feedback mechanism is based on dissorder-induced light. However, random lasers occur in gain media with numerous scatterers and produce coherent laser emission without any predesigned cavity. The generation of coherent emission from multiple scattering is quite general and its basic principles are shown here using sulforhodamine B-TiO suspensions system. These suspensions were pumped with 337.1 nm pulses from N2 laser and the spectral and temporal behavior of light emitted from the pumped surface was recorded. When we pump power above a certain threshold a dramatic narrowing of the emission line width and a shortening of the emitted pulses were observed. We have experimentally found that i
... Show More152 sera were collected from healthy individuals residing A;-Haweja City were tested for antibody titers for brucella antigens by slide agglutination test
Locking of the knee is a one of the commonest orthopedic outpatient presentation. This patient usually need magnetic resonance imaging (MRI) when there is suspected lesion in the soft tissue clinically. Meniscal tears is the first differential diagnosis when accompany with painful knee. (1, 2)
Giant cell tumor (GCT) is benign a localized nodular tenosynovitis often occur in the tendon sheath , Mostly involve the hand tendons in middle age group between 30 and 50 years old , female affect more than male.(3,4) The WHO defines two well-known kinds of giant cell tumor: (1) pigmented villonodular synovitis ( generalized type), which mainly involve the joints of the lower limb and (2) giant cell tumor of the tendon sheath ( localized type)
Locking of the knee is a one of the commonest orthopedic outpatient presentation. This patient usually need magnetic resonance imaging (MRI) when there is suspected lesion in the soft tissue clinically. Meniscal tears is the first differential diagnosis when accompany with painful knee. (1, 2)Giant cell tumor (GCT) is benign a localized nodular tenosynovitis often occur in the tendon sheath , Mostly involve the hand tendons in middle age group between 30 and 50 years old , female affect more than male.(3,4) The WHO defines two well-known kinds of giant cell tumor: (1) pigmented villonodular synovitis ( generalized type), which mainly involve the joints of the lower limb and (2) giant cell tumor of the tendon sheath ( localized type)
... Show MoreIn this research the results of applying Artificial Neural Networks with modified activation function to perform the online and offline identification of four Degrees of Freedom (4-DOF) Selective Compliance Assembly Robot Arm (SCARA) manipulator robot will be described. The proposed model of identification strategy consists of a feed-forward neural network with a modified activation function that operates in parallel with the SCARA robot model. Feed-Forward Neural Networks (FFNN) which have been trained online and offline have been used, without requiring any previous knowledge about the system to be identified. The activation function that is used in the hidden layer in FFNN is a modified version of the wavelet function. This approach ha
... Show MoreIn this research the results of applying Artificial Neural Networks with modified activation function to
perform the online and offline identification of four Degrees of Freedom (4-DOF) Selective Compliance
Assembly Robot Arm (SCARA) manipulator robot will be described. The proposed model of
identification strategy consists of a feed-forward neural network with a modified activation function that
operates in parallel with the SCARA robot model. Feed-Forward Neural Networks (FFNN) which have
been trained online and offline have been used, without requiring any previous knowledge about the
system to be identified. The activation function that is used in the hidden layer in FFNN is a modified
version of the wavelet func