Preferred Language
Articles
/
jih-2363
ON-Line MRI Image Selection and Tumor Classification using Artificial Neural Network
...Show More Authors

When soft tissue planning is important, usually, the Magnetic Resonance Imaging (MRI) is a medical imaging technique of selection. In this work, we show a modern method for automated diagnosis depending on a magnetic resonance images classification of the MRI. The presented technique has two main stages; features extraction and classification. We obtained the features corresponding to MRI images implementing Discrete Wavelet Transformation (DWT), inverse and forward, and textural properties, like rotation invariant texture features based on Gabor filtering, and evaluate the meaning of every property in the classification. The classifier is according to Feed Forward Back Propagation Artificial Neural Network (FP-ANN) in the classification stage. The properties thereafter derived to be implemented to teach a neural network based binary classifier that will be automatically able to conclude whether the image is that of a pathological, suffering from brain lesion, or a normal brain. The proposed algorithm obtained the sensitivity of 97.50%, specificity of 82.86% and accuracy of 94.3% for clinical Brain MRI database. This outcome proofs that the presented algorithm is robust and effective compared with other recent techniques.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Fri Dec 01 2023
Journal Name
Al-khwarizmi Engineering Journal
Development of an ANN Model for RGB Color Classification using the Dataset Extracted from a Fabricated Colorimeter
...Show More Authors

 

Codes of red, green, and blue data (RGB) extracted from a lab-fabricated colorimeter device were used to build a proposed classifier with the objective of classifying colors of objects based on defined categories of fundamental colors. Primary, secondary, and tertiary colors namely red, green, orange, yellow, pink, purple, blue, brown, grey, white, and black, were employed in machine learning (ML) by applying an artificial neural network (ANN) algorithm using Python. The classifier, which was based on the ANN algorithm, required a definition of the mentioned eleven colors in the form of RGB codes in order to acquire the capability of classification. The software's capacity to forecast the color of the code that belongs to an ob

... Show More
View Publication Preview PDF
Scopus Crossref
Publication Date
Mon Feb 25 2019
Journal Name
Journal Of Accounting And Financial Studies ( Jafs )
Using Classification of Brown risks in Evaluation of the internal control system: Application Research in Karbala University
...Show More Authors

Internal control system is a safety valve that preserves economic units assets and ensure the accuracy of financial data, as well as to obligation in the laws, regulations, administrative policies ,and improve the efficiency, effectiveness and economic of operation, so it has become imperative for these units attention to internal and developed control system The research problem in exposure the economic units when the exercise of their business to many of the risks to growth or hinder the achievement of its objectives and the risks (financial, operational, strategy, risk) and not it rely on risk Assessment according to modern scientific methods, as in Brown's risk Classification, Which led to the weakness of the internal control identif

... Show More
View Publication Preview PDF
Crossref
Publication Date
Fri Dec 01 2023
Journal Name
Al-khwarizmi Engineering Journal
Development of an ANN Model for RGB Color Classification using the Dataset Extracted from a Fabricated Colorimeter
...Show More Authors

Codes of red, green, and blue data (RGB) extracted from a lab-fabricated colorimeter device were used to build a proposed classifier with the objective of classifying colors of objects based on defined categories of fundamental colors. Primary, secondary, and tertiary colors namely red, green, orange, yellow, pink, purple, blue, brown, grey, white, and black, were employed in machine learning (ML) by applying an artificial neural network (ANN) algorithm using Python. The classifier, which was based on the ANN algorithm, required a definition of the mentioned eleven colors in the form of RGB codes in order to acquire the capability of classification. The software's capacity to forecast the color of the code that belongs to an object under de

... Show More
Preview PDF
Scopus Crossref
Publication Date
Sun Dec 06 2015
Journal Name
Baghdad Science Journal
Synthesis and Characterization of Some Metal Complexes with their Sulfamethoxazoleand 4,4'-dimethyl-2,2'-bipyridyl and study Cytotoxic Effect on Hep-2 Cell Line
...Show More Authors

The ligand 4-amino-N-(5-methylisoxazole-3-yl)-benzene-sulfonamide(L1) (as a chelating ligand) was treated with Pd(II),Pt (IV) and Au(III) ions in alcoholic medium in order to prepare a series of new metal complexes. Mixed ligand complexes of this primary ligand were prepared in alcoholic medium in presence of the co-ligand 4,4'-dimethyl-2,2'-bipyridyl(L2) with Cu(II) ,Pd(II) and Au(III) ions. The complexes were characterized in solid state using flame atomic absorption, elemental analysis C.H.N.S, FT-IR, UV-Vis Spectroscopy, conductivity and magnetic susceptibility measurements. The nature of some complexes formed in ethanolic solution has been studied following the molar ratio method, also stability constant was studied and the complexes f

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Thu Sep 01 2016
Journal Name
Journal Of Engineering
Calculating the Transport Density Index from Some of the Productivity Indicators for Railway Lines by Using Neural Networks
...Show More Authors

The efficiency evaluation of the railway lines performance is done through a set of indicators and criteria, the most important are transport density, the productivity of enrollee, passenger vehicle production, the productivity of freight wagon, and the productivity of locomotives. This study includes an attempt to calculate the most important of these indicators which transport density index from productivity during the four indicators, using artificial neural network technology. Two neural networks software are used in this study, (Simulnet) and (Neuframe), the results of second program has been adopted. Training results and test to the neural network data used in the study, which are obtained from the international in

... Show More
View Publication Preview PDF
Publication Date
Fri Feb 01 2019
Journal Name
Iraqi Journal Of Information & Communications Technology
Evaluation of DDoS attacks Detection in a New Intrusion Dataset Based on Classification Algorithms
...Show More Authors

Intrusion detection system is an imperative role in increasing security and decreasing the harm of the computer security system and information system when using of network. It observes different events in a network or system to decide occurring an intrusion or not and it is used to make strategic decision, security purposes and analyzing directions. This paper describes host based intrusion detection system architecture for DDoS attack, which intelligently detects the intrusion periodically and dynamically by evaluating the intruder group respective to the present node with its neighbors. We analyze a dependable dataset named CICIDS 2017 that contains benign and DDoS attack network flows, which meets certifiable criteria and is ope

... Show More
View Publication Preview PDF
Crossref (14)
Crossref
Publication Date
Tue Mar 01 2022
Journal Name
International Journal Of Nonlinear Analysis And Applications
Semi-parametric regression function estimation for environmental pollution with measurement error using artificial flower pollination algorithm
...Show More Authors

Artificial Intelligence Algorithms have been used in recent years in many scientific fields. We suggest employing flower pollination algorithm in the environmental field to find the best estimate of the semi-parametric regression function with measurement errors in the explanatory variables and the dependent variable, where measurement errors appear frequently in fields such as chemistry, biological sciences, medicine, and epidemiological studies, rather than an exact measurement. We estimate the regression function of the semi-parametric model by estimating the parametric model and estimating the non-parametric model, the parametric model is estimated by using an instrumental variables method (Wald method, Bartlett’s method, and Durbin

... Show More
Publication Date
Fri Jan 01 2021
Journal Name
Environmental Pollution
Prediction of sediment heavy metal at the Australian Bays using newly developed hybrid artificial intelligence models
...Show More Authors

View Publication
Crossref (96)
Crossref
Publication Date
Thu Jun 19 2025
Journal Name
Journal Of Baghdad College Of Dentistry
Immunohistochemical assessment of tumor suppressor gene Wwox in relation to proliferative marker KI67 proteins expression in giant cell lesions of the jaws and giant cell tumor of long bones
...Show More Authors

Background: Peripheral giant cell lesion (PGCL) and central giant cell lesion (CGCL) of the jaws have a distinct clinical behavior.Giant cell tumour (GCT) is a benign locally aggressive neoplasm affects the long bones. Both lesions are characterized histologically by multinucleated giant cells in a background of ovoid to spindle-shaped mesenchymal cells. The WW domain-containing oxidoreductase (WWOX) gene is located at 16q23.1–16q23.2, a region that spans the second most common human fragile site, FRA16D, at 16q23.2.The Ki-67 antigen is a nuclear protein that is associated with and may be necessary for cellular proliferation.Ki-67 protein is present during all active phases of the cell cycle (G1, S, G2, and mitosis), but is absent fr

... Show More
View Publication Preview PDF
Publication Date
Mon Jun 05 2023
Journal Name
Journal Of Economics And Administrative Sciences
Selection of variables Affecting Red Blood Cell by Firefly Algorithm
...Show More Authors

Some maps of the chaotic firefly algorithm were selected to select variables for data on blood diseases and blood vessels obtained from Nasiriyah General Hospital where the data were tested and tracking the distribution of Gamma and it was concluded that a Chebyshevmap method is more efficient than a Sinusoidal map method through mean square error criterion.

View Publication Preview PDF
Crossref