Epoxy resins were modified using thermoplastics, such as polystyrene and poly (methylmethacrylate) (PMMA) or their monomers polymerized in situe. The modifications showed good results specially when (PMMA) was used. Thermal analysis of the modified polymers were studied using (DSC) and other physico-mechanical properties measurement.
In this research a study of the effect of quality, sequential and directional layers for three types of fibers are:(Kevlar fibers-49 woven roving and E- glass fiber woven roving and random) on the fatigue property using epoxy as matrix. The test specimens were prepared by hand lay-up method the epoxy resin used as a matrix type (Quick mast 105) in prepared material composit . Sinusoidal wave which is formed of variable stress amplitudes at 15 Hz cycles was employed in the fatigue test ( 10 mm )and (15mm) value 0f deflection arrival to numbers of cycle failure limit, by rotary bending method by ( S-N) curves this curves has been determined ( life , limit and fa
... Show MoreThis research is devoted to study the effect of different in weight percentage of Sio2 particles and glass fibers (5, 10, 15, 20) wt. % on the wear rate epoxy resin. The results show that the value of hardness increase with the increase for the weight percentage of reinforcing particles and fibers, while the wear rate decrease with the increase the load level of the reinforcing particles and fibers . The largest value of the hardness, and the lowest value of the wear rate for epoxy reinforced with 20% of SiO2, the wear rate increase in general with increasing the applied load.
In this study, the surface of the epoxy/Al composite is treated using a dielectric barrier discharge (DBD) plasma in the presence of air. The epoxy composite was prepared by mixing 0.1g and 0.3 g aluminum powder with epoxy resin and its hardener in a ratio of 3:1. The surface epoxy/Al composite as a dielectric barrier layer (DB) is studied at an applied frequency of 8 kHz and at three exposure times 0, 2, and 4 min. The UV degradation process has been studied using UV-Visible spectroscopy, for these polymers. The absorbance intensity in the UV region (200–320 nm) was high. The absorbance level decreased after 2 minutes and increased after 4 min exposure time. Before exposure to plasma, the epoxy/Al composite at 0.1 g Al ha
... Show MoreIn this research, Zinc oxide (ZnO)/epoxy nanocomposite was synthesized by simple casting method with 2wt. % ZnO concentration. The aim of this work was to study the effect of pH and composite dosage on the photocatalytic activity of ZnO/ epoxy nanocomposite. Scanning electron microscopy (SEM) technique images proof the homogeneous distribution of ZnO nanoparticles in epoxy. A synthesized nanocomposite samples were characterized by Fourier Transform Infrared spectrometer (FTIR) measurements. Two spectra for epoxy and 2wt.% ZnO/epoxy nanocomposites were similar and there are no new bonds formed from the incorporation of ZnO nanoparticles. Using HCl and NaOH were added to Methylene blue (MB) dye (5ppm) to gat pH values 3 and 8. The degradat
... Show MorePolyaniline organic Semiconductor polymer was prepared by oxidation polymerization by adding hydrochloric acid concentration of 0.1M and potassium per sulfate concentration of 0.2M to 0.1M of aniline at room temperature, the polymer was deposited at glass substrate, the structural and optical properties were studies through UV-VIS, IR, XRD measurements, films have been operated as a sensor of vapor H2SO4 and HCl acids.
In this study a composite materials were prepared containing matrix of polymer blend (Epoxy (EP) 90% + unsaturated polyester (UPS) 10%), (Epoxy (EP) 80% + unsaturated polyester (UPS) 20%), reinforced with Kevlar (K) or, and iron woven (Fe) with one value of volume fraction (30) %. This composite are from: (EP 90%, UPE 10% +K), (EP 90%, UPE 10% +K+Fe), (EP 80%, UPE 20% +K), (EP 80%, UPE 20% +K+Fe). All samples were prepared using hand layup method and then impact test was done in both normal condition and after immersion in tap water for the same period time (eight weeks) also diffusion test was done for period's time (three months). The results showed that had been effected differently after immersion, but specimen (EP80%+UPS20%+K+Fe) ha
... Show MoreThe physical, the thermal and the mechanical properties of Nano-composites, that consisted of Polyprime EP epoxy that reinforced by multi-walled carbon nanotubes (MWCNTs), have been studied. Various loading ratios, 0.1, 0.5, and 1 wt. %of MWCNT shave been infused into epoxy by a magnetic stirrer and then the hardener mixed with the mthat supplied with the epoxy. All sample shave been cutting using CNC machine. Tensile test, three-point bending, hardness tests, lee's disk, differential scanning calorimetry, water absorption and dielectric and electrical conductivity test were utilized on unfilled, MWCNT-filled epoxy to identify the loading effect on the properties of materials. Scanning electron microscopy (SEM) was used to determine the
... Show MoreFiber reinforced polymer composite is an important material for structural application. The diversified application of FRP composite has taken center of attraction for interdisciplinary research. However, improvements on mechanical properties of this class of materials are still under research for different applications. In this paper we have modified the epoxy matrix by Al2O3, SiO2 and TiO2 nano particles in glass fiber/epoxy composite to improve the mechanical and physical properties. The composites are fabricated by hand lay-up method. It is observed that mechanical properties like flexural strength, hardness are more in case of SiO2 modified epoxy composite compare to other nano
... Show MoreProduction of fatty acid esters (biodiesel) from oleic acid and 2-ethylhexanol using sulfated zirconia as solid catalyst for the production of biodiesel was investigated in this work.
The parameters studied were temperature of reaction (100 to 130°C), molar ratio of alcohol to free fatty acid (1:1 to 3:1), concentration of catalyst (0.5 to 3%wt), mixing speed (500 to 900 rpm) and types of sulfated zirconia (i.e modified, commercial, prepared catalyst according to literature and reused catalyst). The results show the best conversion to biodiesel was 97.74% at conditions of 130°C, 3:1, 2wt% and 650 rpm using modified catalyst respectively. Also, modified c
... Show MoreThis study concerns the removal of a trihydrate antibiotic (Amoxicillin) from synthetically contaminated water by adsorption on modified bentonite. The bentonite was modified using hexadecyl trimethyl ammonium bromide (HTAB), which turned it from a hydrophilic to a hydrophobic material. The effects of different parameters were studied in batch experiments. These parameters were contact time, solution pH, agitation speed, initial concentration (C0) of the contaminant, and adsorbent dosage. Maximum removal of amoxicillin (93 %) was achieved at contact time = 240 min, pH = 10, agitation speed = 200 rpm, initial concentration = 30 ppm, and adsorbent dosage = 3 g bentonite per 1L of pollutant solution. The characterization of the adsorbent, modi
... Show More