The purpose of this research is to show a constructive method
for using known fuzzy groups as building blocks to form more fuzzy
subgroups. As we shall describe employing this procedure with the
fuzzy generating subgroups give us a large class of fuzzy
subgroup of abelian groups which include all fuzzy subgroup of
abelian groups of finite order.
Let
be an
module, and let
be a set, let
be a soft set over
. Then
is said to be a fuzzy soft module over
iff
,
is a fuzzy submodule of
. In this paper, we introduce the concept of fuzzy soft modules over fuzzy soft rings and some of its properties and we define the concepts of quotient module, product and coproduct operations in the category of
modules.
In this paper we recall the definition of fuzzy length space on a fuzzy set after that we recall basic definitions and properties of fuzzy length. We define fuzzy bounded operator as an introduction to defined fuzzy length of an operator then we proved that the fuzzy length space FB ̃ ̃ consisting of all fuzzy bounded linear operators from a fuzzy length space ̃ into a fuzzy length space ̃ is fuzzy complete if ̃ is fuzzy complete. Also we proved that every finite dimensional fuzzy length space is fuzzy complete.
The purpose of this paper is to define fuzzy subspaces for fuzzy space of orderings and we prove some results about this definition in which it leads to a lot of new results on fuzzy space of orderings. Also we define the sum and product over such spaces such that: If f = < a1,…,an > and g = < b1,…bm>, their sum and product are f + g = < a1…,an, b1, …, bm> and f × g =
Zadah in [1] introduced the notion of a fuzzy subset A of a nonempty set S as a mapping from S into [0,1], Liu in [2] introduced the concept of a fuzzy ring, Martines [3] introduced the notion of a fuzzy ideal of a fuzzy ring. A non zero proper ideal I of a ring R is called an essential ideal if I  J  (0), for any non zero ideal J of R, [4]. Inaam in [5] fuzzified this concept to essential fuzzy ideal of fuzzy ring and gave its basic properties. Nada in [6] introduced and studied notion of semiessential ideal in a ring R, where a non zero i
... Show MoreLet A, and N are a semiring ,and a left A- semimodule, respectively. In this work we will discuss two cases:
- The direct summand of π-projective semi module is π-projective, while the direct sum of two π-projective semimodules in general is not π-projective . The details of the proof will be given.
- We will give a condition under which the direct sum of two π-projective semi modules is π-projective, as well as we also set conditions under which π-projective semi modules are projective.
The aim of this paper is to introduce and study new class of fuzzy function called fuzzy semi pre homeomorphism in a fuzzy topological space by utilizing fuzzy semi pre-open sets. Therefore, some of their characterization has been proved; In addition to that we define, study and develop corresponding to new class of fuzzy semi pre homeomorphism in fuzzy topological spaces using this new class of functions.
The principal aim of this research is to use the definition of fuzzy normed space
to define fuzzy bounded operator as an introduction to define the fuzzy norm of a
fuzzy bounded linear operator then we proved that the fuzzy normed space FB(X,Y)
consisting of all fuzzy bounded linear operators from a fuzzy norm space X into a
fuzzy norm space Y is fuzzy complete if Y is fuzzy complete. Also we introduce
different types of fuzzy convergence of operators.
The study of torsion {torsion free) fuzzy modules over fuzzy
integtal domain as a generalization oftorsion (torsion free) modules.
The purpose of this paper is to introduce and study the concepts of fuzzy generalized open sets, fuzzy generalized closed sets, generalized continuous fuzzy proper functions and prove results about these concepts.
The product of rn-paracompact and rn-strongly paracompact are briefly disc. ussed.