New class A^* (a,c,k,β,α,γ,μ) is introduced of meromorphic univalent functions with positive coefficient f(z)=□(1/z)+∑_(n=1)^∞▒〖a_n z^n 〗,(a_n≥0,z∈U^*,∀ n∈ N={1,2,3,…}) defined by the integral operator in the punctured unit disc U^*={z∈C∶0<|z|<1}, satisfying |(z^2 (I^k (L^* (a,c)f(z)))^''+2z(I^k (L^* (a,c)f(z)))^')/(βz(I^k (L^* (a,c)f(z)))^''-α(1+γ)z(I^k (L^* (a,c)f(z)))^' )|<μ,(0<μ≤1,0≤α,γ<1,0<β≤1/2 ,k=1,2,3,… ) . Several properties were studied like coefficient estimates, convex set and weighted mean.
The aim of this paper is to present the numerical method for solving linear system of Fredholm integral equations, based on the Haar wavelet approach. Many test problems, for which the exact solution is known, are considered. Compare the results of suggested method with the results of another method (Trapezoidal method). Algorithm and program is written by Matlab vergion 7.
Contents IJPAM: Volume 116, No. 3 (2017)
A method for Approximated evaluation of linear functional differential equations is described. where a function approximation as a linear combination of a set of orthogonal basis functions which are chebyshev functions .The coefficients of the approximation are determined by (least square and Galerkin’s) methods. The property of chebyshev polynomials leads to good results , which are demonstrated with examples.
In this paper, Touchard polynomials (TPs) are presented for solving Linear Volterra integral equations of the second kind (LVIEs-2k) and the first kind (LVIEs-1k) besides, the singular kernel type of this equation. Illustrative examples show the efficiency of the presented method, and the approximate numerical (AN) solutions are compared with one another method in some examples. All calculations and graphs are performed by program MATLAB2018b.
In this paper, we present some numerical methods for solving systems of linear FredholmVolterra integral equations of the second kind. These methods namely are the Repeated Trapezoidal Method (RTM) and the Repeated Simpson's 1/3 Method (RSM). Also some numerical examples are presented to show the efficiency and the accuracy of the presented work.
The objective of this paper is, first, study a new collection of sets such as field and we discuss the properties of this collection. Second, introduce a new concepts related to the field such as measure on field, outer measure on field and we obtain some important results deals with these concepts. Third, introduce the concept of null-additive on field as a generalization of the concept of measure on field. Furthermore, we establish new concept related to - field noted by weakly null-additive on field as a generalizations of the concepts of measure on and null-additive. Finally, we introduce the restriction of a set function on field and many of its properties and characterizations are given.
This paper is dealing with non-polynomial spline functions "generalized spline" to find the approximate solution of linear Volterra integro-differential equations of the second kind and extension of this work to solve system of linear Volterra integro-differential equations. The performance of generalized spline functions are illustrated in test examples
Abstract:In this paper, some probability characteristics functions (moments, variances,convariance, and spectral density functions) are found depending upon the smallestvariance of the solution of some stochastic Fredholm integral equation contains as aknown function, the sine wave function
In this paper, the linear system of Fredholm integral equations is solving using Open Newton-Cotes formula, which we use five different types of Open Newton-Cotes formula to solve this system. Compare the results of suggested method with the results of another method (closed Newton-Cotes formula) Finally, at the end of each method, algorithms and programs developed and written in MATLAB (version 7.0) and we give some numerical examples, illustrate suggested method
In this paper, double Sumudu and double Elzaki transforms methods are used to compute the numerical solutions for some types of fractional order partial differential equations with constant coefficients and explaining the efficiently of the method by illustrating some numerical examples that are computed by using Mathcad 15.and graphic in Matlab R2015a.