New class A^* (a,c,k,β,α,γ,μ) is introduced of meromorphic univalent functions with positive coefficient f(z)=□(1/z)+∑_(n=1)^∞▒〖a_n z^n 〗,(a_n≥0,z∈U^*,∀ n∈ N={1,2,3,…}) defined by the integral operator in the punctured unit disc U^*={z∈C∶0<|z|<1}, satisfying |(z^2 (I^k (L^* (a,c)f(z)))^''+2z(I^k (L^* (a,c)f(z)))^')/(βz(I^k (L^* (a,c)f(z)))^''-α(1+γ)z(I^k (L^* (a,c)f(z)))^' )|<μ,(0<μ≤1,0≤α,γ<1,0<β≤1/2 ,k=1,2,3,… ) . Several properties were studied like coefficient estimates, convex set and weighted mean.
This research deals with the use of a number of statistical methods, such as the kernel method, watershed, histogram, and cubic spline, to improve the contrast of digital images. The results obtained according to the RSME and NCC standards have proven that the spline method is the most accurate in the results compared to other statistical methods.
The research seeks to find out the extent of the coverage of the Mosul press to the issues of psychological and social effects of the organization "IS" on the community of Mosul, by analyzing the content of the newspapers “Economic City” and “Mosul News”. As well as to stand at the types of psychological and social effects and their repercussions on the Mosul community including figures, statistics and evidence that were covered in the theoretical study of these topics.
This study is the first scientific diagnosis to reveal the size and types of psychological and social effects of the “ISIS” organization through what was monitored by the Mosul press. The study seeks to draw the attention of officials, decision-m
... Show MoreIn this paper, the error distribution function is estimated for the single index model by the empirical distribution function and the kernel distribution function. Refined minimum average variance estimation (RMAVE) method is used for estimating single index model. We use simulation experiments to compare the two estimation methods for error distribution function with different sample sizes, the results show that the kernel distribution function is better than the empirical distribution function.
The using of the parametric models and the subsequent estimation methods require the presence of many of the primary conditions to be met by those models to represent the population under study adequately, these prompting researchers to search for more flexible models of parametric models and these models were nonparametric models.
In this manuscript were compared to the so-called Nadaraya-Watson estimator in two cases (use of fixed bandwidth and variable) through simulation with different models and samples sizes. Through simulation experiments and the results showed that for the first and second models preferred NW with fixed bandwidth fo
... Show MoreIn this paper we show that if ? Xi is monotonically T2-space then each Xi is monotonically T2-space, too. Moreover, we show that if ? Xi is monotonically normal space then each Xi is monotonically normal space, too. Among these results we give a new proof to show that the monotonically T2-space property and monotonically normal space property are hereditary property and topologically property and give an example of T2-space but not monotonically T2-space.
Blockchain is an innovative technology that has gained interest in all sectors in the era of digital transformation where it manages transactions and saves them in a database. With the increasing financial transactions and the rapidly developed society with growing businesses many people looking for the dream of a better financially independent life, stray from large corporations and organizations to form startups and small businesses. Recently, the increasing demand for employees or institutes to prepare and manage contracts, papers, and the verifications process, in addition to human mistakes led to the emergence of a smart contract. The smart contract has been developed to save time and provide more confidence while dealing, as well a
... Show MoreMost of the Weibull models studied in the literature were appropriate for modelling a continuous random variable which assumes the variable takes on real values over the interval [0,∞]. One of the new studies in statistics is when the variables take on discrete values. The idea was first introduced by Nakagawa and Osaki, as they introduced discrete Weibull distribution with two shape parameters q and β where 0 < q < 1 and b > 0. Weibull models for modelling discrete random variables assume only non-negative integer values. Such models are useful for modelling for example; the number of cycles to failure when components are subjected to cyclical loading. Discrete Weibull models can be obta
... Show MoreHepatitis-B (HBV) is a viral disease cause liver damage, cirrhosis, fibrosis and hepatocellular carcinoma. Present study attempted to elucidate the biochemical and haematological markers other than Australia antigen, of hepatitis,B,vairusV (HBsAg) for better assessment of HBV infection. The present study was conducted on 76 men, 50 of them were found to be HBeAg positive and 26 were negative, mean age was53±5.7years. Haematological parameters such as Absolute Erythrocyte( Abs Eryt), Absolute Leukocyte(Abs Leuk) , Haemoglobin(Hb), Packed Cell Volume(PCV),Mean Corpuscular Volume (MCV), Red Cell Distribution Width (RDW), Mean Corpuscular Haemoglobin (MCH),MCH Concentration(MCHC) ,Neutrophi
... Show MoreStructure of network, which is known as community detection in networks, has received a great attention in diverse topics, including social sciences, biological studies, politics, etc. There are a large number of studies and practical approaches that were designed to solve the problem of finding the structure of the network. The definition of complex network model based on clustering is a non-deterministic polynomial-time hardness (NP-hard) problem. There are no ideal techniques to define the clustering. Here, we present a statistical approach based on using the likelihood function of a Stochastic Block Model (SBM). The objective is to define the general model and select the best model with high quality. Therefor
... Show MoreThe issue of image captioning, which comprises automatic text generation to understand an image’s visual information, has become feasible with the developments in object recognition and image classification. Deep learning has received much interest from the scientific community and can be very useful in real-world applications. The proposed image captioning approach involves the use of Convolution Neural Network (CNN) pre-trained models combined with Long Short Term Memory (LSTM) to generate image captions. The process includes two stages. The first stage entails training the CNN-LSTM models using baseline hyper-parameters and the second stage encompasses training CNN-LSTM models by optimizing and adjusting the hyper-parameters of
... Show More