Preferred Language
Articles
/
jih-2141
Numerical Solution for Classical Optimal Control Problem Governing by Hyperbolic Partial Differential Equation via Galerkin Finite Element-Implicit method with Gradient Projection Method
...Show More Authors

     This paper deals with the numerical solution of the discrete classical optimal control problem (DCOCP) governing by linear hyperbolic boundary value problem (LHBVP). The method which is used here consists of: the GFEIM " the Galerkin finite element method in space variable with the implicit finite difference method in time variable" to find the solution of the discrete state equation (DSE) and the solution of its corresponding discrete adjoint equation, where a discrete classical control (DCC) is given.  The gradient projection method with either the Armijo method (GPARM) or with the optimal method (GPOSM) is used to solve the minimization problem which is obtained from the necessary condition for optimality of the DCOCP to find the DCC.An algorithm is given and a computer program is coded using the above methods to find the numerical solution of the DCOCP with step length of space variable   , and step length of time variable . Illustration examples are given to explain the efficiency of these methods. The results show the methods which are used here are better than those obtained when we used the Gradient method (GM) or Frank Wolfe method (FWM) with Armijo step search method to solve the minimization problem.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sat Sep 01 2018
Journal Name
Polyhedron
Novel dichloro (bis {2-[1-(4-methylphenyl)-1H-1, 2, 3-triazol-4-yl-κN3] pyridine-κN}) metal (II) coordination compounds of seven transition metals (Mn, Fe, Co, Ni, Cu, Zn and Cd)
...Show More Authors

Preview PDF